Answer :
The time taken by the reaction is 19.2 seconds.
The order of reaction is, second order reaction.
Explanation :
The general formula to determine the unit of rate constant is:

Unit of rate constant Order of reaction
0
1
2
As the unit of rate constant is
. So, the order of reaction is second order.
The expression used for second order kinetics is:
![kt=\frac{1}{[A_t]}-\frac{1}{[A_o]}](https://tex.z-dn.net/?f=kt%3D%5Cfrac%7B1%7D%7B%5BA_t%5D%7D-%5Cfrac%7B1%7D%7B%5BA_o%5D%7D)
where,
k = rate constant = 
t = time = ?
= final concentration = 0.97 M
= initial concentration = 2.48 M
Now put all the given values in the above expression, we get:


Therefore, the time taken by the reaction is 19.2 seconds.
Answer:
C.) 2-butyne
Explanation:
Since the molecule has 4 central carbons, it has the prefix but-.
Since the molecule has a triple bond between central carbons, it has an ending of -yne.
Since the triple bond starts on the second carbon, it has a 2 - prefix.
Answer: Volume of the 1M EtOH and water should be 0.75 ml and 9.25 ml respectively to obtain the working concentration.
Explanation:
According to the dilution law,

where,
= molarity of stock solution = 1M
= volume of stock solution = ?
= molarity of diluted solution = 0.075 M (1mM=0.001M)
= volume of diluted solution = 10 ml
Putting in the values we get:


Thus 0.75 ml of 1M EtOH is taken and (10-0.75)ml = 9.25 ml of water is added to make the volume 10ml.
Therefore, volume of the 1M EtOH and water should be 0.75 ml and 9.25 ml respectively to obtain the working concentration
Answer:
Potassium is an element that has 19 electrons