Answer:
If the mass stays constant the object's density decreases as the volume increases. ... Because the property of density is a constant for all variables, density can be used to identify the material an object is made of.
Explanation:
Answer:
Option B. 3.0 M
Explanation:
From the question given above, the following data were obtained:
Volume of solution = 3.0 L
Mole of MgCl₂ = 9 moles
Molarity =?
Molarity can simply be defined as the mole of solute per unit litre of the solution. Mathematically, it can be expressed as:
Molarity = mole of solute /Volume of solution
With the above formula, we can obtain the molarity of the solution as follow:
Volume of solution = 3.0 L
Mole of MgCl₂ = 9 moles
Molarity =?
Molarity = mole of solute /Volume of solution
Molarity = 9 / 3
Molarity = 3 mol/L = 3.0 M
Thus, the molarity of the solution is 3 M
Answer:
amount of silver chloride required is 0.015 moles or 2.1504 g
Explanation:
0.1M AgCL means 0.1mol/dm³ or 0.1mol/L
1L = 1000mL
if 0.1mol of AgCl is contained in 1000mL of solution
then x will be contained in 150mL of solution
cross multiply to find x
x = (0.1*150)/1000
x= 0.015 moles
moles of silver chloride present in 150 mL of solution is 0.15 moles
To convert this to grams, simply multiply this value by the molar mass of silver chloride
molar mass of silver chloride AgCl =107.86 + 35.5
=143.36 g/mol
mass of AgCl = moles *molar mass
=0.015*143.36
=2.1504g
=
First off, you must realize that the phase changes are marked by the points B and D on the graph. They are level because all of the energy (or heat) being added is being consumed by the physical process. So The temperature is increasing before the phase change, and after the phase change. The moments before and after are represented by points A, C, and E.