(a) The height of the cliff will be 8.26 meters.
(b) The time would it take to reach the ground will be 0.717 sec.
<h3>What is velocity?</h3><h3 />
The change of displacement with respect to time is defined as the velocity. Velocity is a vector quantity. it is a time-based component. 
(a) The height of the cliff will be 8.26 meters.
According to Newton's second equation of motion 

Hence The height of the cliff will be 8.26 meters.
(b)The time would it take to reach the ground will be 0.717 sec.
We must have the final velocity to find the time so;

According to Newton's third equation of motion ;

Hence the time would it take to reach the ground will be 0.717 sec.
To learn more about the velocity refer to the link ;
brainly.com/question/862972
  
        
             
        
        
        
If there's any point in a circuit where the current has a choice 
of which branch to take, then you have a <em>parallel circuit</em>.
        
             
        
        
        
Answer:
Explanation:
All this information only applies to the person. There is an extra tension force if we are talking about the elevator, but we are not. Dont forget to apply the units
Acceleration means change in speed or velocity. The elevator is moving at a constant speed of 3 meters. You wont even know you are moving because there is no change in acceleration. It equals 0
The forces ONLY acting on the person would be the force of gravity pulling them down, and the normal force that the elevator is reciprocating from the person standing on it.
Force = mass x acceleration. You have 100 kg and you are accelerating at 0 m/s. The force is 0. Which makes sense because the force of gravity and the net force completely cancel each other out. 
 
        
             
        
        
        
The electrostatic force between two charges is given by Coulomb's law:

where
ke is the Coulomb's constant
q1 is the first charge
q2 is the second charge
r is the separation between the two charges
By substituting the data of the problem into the equation, we can find the magnitude of the force between the two charges:
