Answer:
0.37 m
Explanation:
Let the shoulder be the origin.
The center of mass of the arm bones is 0.60 m/2 = 0.30 m and the center of mass of the hand bones is 0.10 m/2 = 0.05 m since they are modeled as straight rods with uniform density and the center of mass of a rod is x = L/2 where L is the length of the rod.
The center of mass y = (m₁y₁ + m₂y₂)/(m₁ + m₂) where m₁ = mass of arm bones = 4.0 kg, y₁ = distance center of mass of arm bones from shoulder = 0.30 m, m₂ = mass of hand bones = 1.0 kg and y₂ = distance of center of mass hand bones from shoulder = x₁ + distance of center of hand bones from wrist = 0.60 m + 0.05 m = 0.65 m
Substituting these into the equation for the center of mass, we have
y = (m₁y₁ + m₂y₂)/(m₁ + m₂)
y = (4.0 kg × 0.30 m + 1.0 kg × 0.65 m)/(4.0 kg + 1.0 kg)
y = (1.20 kgm + 0.65 kgm)/5.0 kg
y = 1.85 kgm/5.0 kg
y = 0.37 m
The distance of the center of mass from the shoulder is thus y = 0.37 m
Answer:
A
Explanation:
The next step would be precipitation falling
Ultraviolet rays can help us get vitamin D, but they can also damage or skin if w are exposed for too long.
Your answer is D.
Explanation:
We have,
Surface area, 
The current varies wrt time t as :

(a) At t = 2 seconds, electrical charge is given by :

(b) Current is given by :

Instantaneous current at t = 1 s is,

(c) Current is, 
Current density is given by electric current per unit area.

Therefore, it is the required explanation.
The common value for “Speed of light in vacuum” is
metre per second.
Answer: Option b
<u>Solution:
</u>
Speed of light can be defined as the speed with which light waves propagate in different medium. In vacuum, speed of light is 186,282 miles per second or 299,792 km/s which is rounded off as
.
“Speed of light in vacuum” is a universal constant and usually represented by ‘c’. Light waves travels at a speed of
metre per second in vacuum.