The mechanical energy isn't conserved. Some energy is lost to friction.
Option A.
<h3><u>Explanation:</u></h3>
The mechanical energy is defined as the energy of a body which it achieves by virtue of its position and velocity. The mechanical energy are of two types - potential energy and kinetic energy. The potential energy is the energy of the body which it achieves by means of its relative position and is directly proportional to the height of the body from its relative plane. Whereas the kinetic energy of the body is achieved by virtue of its velocity and is directly proportional to the square of velocity of the body.
As the mountaineer is skiing down the slope of a mountain, the potential energy of the person is gradually changing into his kinetic energy. Had it been in an ideal situation, the potential energy lost would have been just equal to the kinetic energy gained by the person. But there's friction which opposes the speed of the body and reduces the velocity. Thus the kinetic energy will be lost to some extent and the energy won't be conserved.
Answer:
How much force is required to cause an object with a mass of 850 kg to accelerate at a rate of 2 meters per second squared (m/s^2)?
Explanation:
<em>1700N
</em>
<em>
Mass multiplied by acceleration gives you the amount of force needed for it.</em>
pavement is defined as the surface of Road or sidewalk.
for example, the surface of Expressway.
There are two types of pavement.
rigid pavement which consists of one layer.
flexible pavement which consist of multiple layers.
While driving on roads of rural areas, if our right wheel moves off the pavement, we should always hold the steering wheel firmly and then take our foot off the pedal, then apply brake lightly until we are moving at a low speed.
if you run off the pavement, you should: turn the steering wheel quickly toward the road steer straight and slow down before attempting to return to the pavement steer straight ahead and speed up apply the brakes hard
To know more about pavement:
brainly.com/question/28456065
#SPJ4
Answer:

Explanation:
First of all let's define the specific molar heat capacity.
(1)
Where:
Q is the released heat by the system
n is the number of moles
ΔT is the difference of temperature of the system
Now, we can find n with the molar mass (M) the mass of the compound (m).
Using (1) we have:


I hope it helps!
Answer:
2000 nickels
Explanation:
One way to solve proportionality problems, direct and inverse: the simple 3 rule.
If the relationship between the magnitudes is direct (when one magnitude increases so does the other), the simple direct rule of three must be applied.
On the contrary, if the relationship between the magnitudes is inverse (when one magnitude increases the other decreases) the rule of three simple inverse applies.
The simple 3 rule is an operation that helps us quickly solve proportionality problems, both direct and inverse.
To make a simple rule of three we need 3 data: two magnitudes proportional to each other, and a third magnitude. From these, we will find out the fourth term of proportionality.
In the simple three rule, therefore, the proportionality relationship between two known values A and B is established, and knowing a third value C, a fourth value D is calculated.
A -> B
C -> D
Calculation
1 nickel --> 5 g
X? nickel --> 10000g
X = (10000 g * 1 nickel) / 5 g
X = 2000 nickels