Answer:
<h2>Magnetic field required for the given induced EMF is 1.41 T</h2>
Explanation:
Potential difference across the blood vessel is given as

here we know that the speed is given as



now we have


Now volume flow rate of the blood is given as


from above equation we have

Now we have


Explanation:
Given:
v₀ = 22 m/s
v = 0 m/s
t = 17.32 s
Find: a
v = at + v₀
(0 m/s) = a (17.32 s) + (22 m/s)
a = -1.270 m/s²
Round as needed.
Newtons third law (inertia) is to blame
Answer:
Explanation:
Magnitude of frictional force = μ mg
μ is either static or kinetic friction.
To start the crate moving , static friction is calculated .
a ) To start crate moving , force required = μ mg where μ is coefficient of static friction .
force required =.517 x 56.6 x 9.8 = 286.76 N .
b ) to slide the crate across the dock at a constant speed , force required
= μ mg where μ is coefficient of kinetic friction , where μ is kinetic friction
= .26 x 56.6 x 9.8 = 144.21 N .