You have to reduce 2.00 an5.00 I order to use the×that=0.800
QUESTION: A pure jet engine propels and aircraft at 340 m/s through air at 45 kPa and -13C. The inlet diameter of this engine is 1.6 m, the compressor pressure ratio is 13, and the temperature at the turbine inlet is 557C. Determine the velocity at the exit of this engines nozzle and the thrust produced.
ANSWER: Due to the propulsion from the inlet diameter of this engine bring 1.6 m allows the compressor rations to radiate allowing thrust propultion above all velocitic rebisomes.
If the solution is treated as an ideal solution, the extent of freezing
point depression depends only on the solute concentration that can be
estimated by a simple linear relationship with the cryoscopic constant:
ΔTF = KF · m · i
ΔTF, the freezing point depression, is defined as TF (pure solvent) - TF
(solution).
KF, the cryoscopic constant, which is dependent on the properties of the
solvent, not the solute. Note: When conducting experiments, a higher KF
value makes it easier to observe larger drops in the freezing point.
For water, KF = 1.853 K·kg/mol.[1]
m is the molality (mol solute per kg of solvent)
i is the van 't Hoff factor (number of solute particles per mol, e.g. i =
2 for NaCl).
Answer:
3000 J
Explanation:
Kinetic energy is:
KE = ½ mv²
If m = 15 kg and v = -20 m/s:
KE = ½ (15 kg) (-20 m/s)²
KE = 3000 J