429.901 is the weight of 195 kg on Jupiter
Answer:
23. 4375 m
Explanation:
There are two parts of the rocket's motion
1 ) accelerating (assume it goes upto h1 height )
using motion equations upwards

Lets find the velocity after 2.5 seconds (V1)
V = U +at
V1 = 0 +5*2.5 = 12.5 m/s
2) motion under gravity (assume it goes upto h2 height )
now there no acceleration from the rocket. it is now subjected to the gravity
using motion equations upwards (assuming g= 10m/s² downwards)
V²= U² +2as
0 = 12.5²+2*(-10)*h2
h2 = 7.8125 m
maximum height = h1 + h2
= 15.625 + 7.8125
= 23. 4375 m
Answer:
7 / 1
Explanation:
The ratio of their amplitude = one-seventh and the ratio of their amplitude = the ratio of their wavelength
Ax / Ay = λx / λy = 1 / 7
λy / λx = 7 / 1
We know the equation
weight = mass × gravity
To work out the weight on the moon, we will need its mass, and the gravitational field strength of the moon.
Remember that your weight can change, but mass stays constant.
So using the information given about the earth weight, we can find the mass by substituting 100N for weight, and we know the gravity on earth is 10Nm*2 (Use the gravitational field strength provided by your school, I am assuming yours in 10Nm*2)
Therefore,
100N = mass × 10
mass= 100N/10
mass= 10 kg
Now, all we need are the moon's gravitational field strength and to apply this to the equation
weight = 10kg × (gravity on moon)
Answer:
Lens at a distance = 7.5 cm
Lens at a distance = 6.86 cm (Approx)
Explanation:
Given:
Object distance u = 12 cm
a) Focal length = 20 cm
b) Focal length = 16 cm
Computation:
a. 1/v = 1/u + 1/f
1/v = 1/20 + 1/12
v = 7.5 cm
Lens at a distance = 7.5 cm
b. 1/v = 1/u + 1/f
1/v = 1/16 + 1/12
v = 6.86 cm (Approx)
Lens at a distance = 6.86 cm (Approx)