Answer:
1.67 moles
Explanation:
From the balanced equation of reaction:
![SO_2 + 2H_2S -> 3S + 2H_2O](https://tex.z-dn.net/?f=SO_2%20%2B%202H_2S%20-%3E%203S%20%2B%202H_2O)
1 mole of sulfur dioxide, SO2, is required to produce 3 moles of sulfur, S.
<em>If 1 mole SO2 = 3 moles S, then, how many moles of SO2 would be required for 5 moles S?</em>
Moles of SO2 needed = 5 x 1/3
= 5/3 or 1.67 moles
Hence, <u>1.67 moles of SO2 would be required to produce 5.0 moles of S.</u>
Answer:
The molality of the glycerol solution is 2.960×10^-2 mol/kg
Explanation:
Number of moles of glycerol = Molarity × volume of solution = 2.950×10^-2 M × 1 L = 2.950×10^-2 moles
Mass of water = density × volume = 0.9982 g/mL × 998.7 mL = 996.90 g = 996.90/1000 = 0.9969 kg
Molality = number of moles of glycerol/mass of water in kg = 2.950×10^-2/0.9969 = 2.960×10^-2 mol/kg
Answer:
2Li(s) + ⅛S₈(s, rhombic) + 2O₂(g) → Li₂SO₄(s)
Explanation:
A thermochemical equation must show the formation of 1 mol of a substance from its elements in their most stable state,.
The only equation that meets those conditions is the last one.
A and B are wrong , because they show Li₂SO₄ as a reactant, not a product.
C is wrong because Li⁺ and SO₄²⁻ are not elements.
D is wrong because it shows the formation of 8 mol of Li₂SO₄.
Answer:
92.6
Explanation:
6 mol x 18.02 g of H2o --> 3 mol x 58.33 g Mg(OH)2
108.12 g of h2o --> 174.99 of Mg(OH)2
g of H2O is 150 g of Mg(OH)2
150g x 108.12g / 174.99 =
92.67