Answer:
(a) ΔU=747J
(b) γ=1.3
Explanation:
For (a) change in internal energy
According to first law of thermodynamics the change in internal energy is given as
ΔU=Q-W
Substitute the given values
ΔU=970J-223J
ΔU=747J
For(b) γ for the gas.
We can calculate γ by ratio of heat capacities of the gas
γ=Cp/Cv
Where Cp is the molar heat capacity at constant pressure
Cv is the molar heat capacity at constant volume
To calculate γ we first need to find Cp and Cv
So
For Cp
As we know
Q=nCpΔT
Cp=(Q/nΔT)

From relation of Cv and Cp we know that
Cp=Cv+R
Where R is gas constant equals to 8.314J/mol.K
So

So
γ=Cp/Cv
γ=[(37J/mol.K) / (28.687J/mol.K)]
γ=1.3
Answer:
(c) position
Explanation:
From the work-energy theorem, the workdone by a force on a body causes a change in kinetic energy of the body.
But, remember that the work done (W) by a force (F) on a body is the product of the force and the distance d, moved by the body caused by the force. i.e
W = F x d
This distance is a measure of the position of the body at a given instance.
Therefore, the work done is given by the force as a function of distance (or position).
Answer:

Explanation:
The charge on one object, 
The distance between the charges, r = 0.22 m
The force between the charges, F = 4,550 N
Let q₂ is the charge on the other sphere. The electrostatic force between two charges is given by the formula as follows :

So, the charge on the other sphere is
.
Answer:
The statement "If a positively charged rod is brought close to a positively charged object, the two objects will repel
" applies to electric charges.
Explanation:
There are only two types of electric charges. Both having own magnitude but different charge.
1. Positive charge
2. Negative charge
Like charges repel each other and opposite charges always attract each other.
When a positively charged rod is brought close to a positively charged object, the rod and the object will repel.