It must be sliding friction, because the fish is already in motion.
Answer:
Explanation:
Using the magnification formula.
Magnification = Image distance(v)/object distance(u) = Image Height(H1)/Object Height(H2)
M = v/u = H1/H2
v/u = H1/H2...1
3) Given the radius of curvature of the concave lens R = 20cm
Focal length F = R/2
f = 20/2
f = 10cm
Object distance u = 5cm
Object height H2= 5cm
To get the image distance v, we will use the mirror formula
1/f = 1/u+1/v
1/v = 1/10-1/5
1/v = (1-2)/10
1/v =-1/10
v = -10cm
Using the magnification formula
(10)/5 = H1/5
10 = H1
H1 = 10cm
Image height of the peg is 10cm
4) If u = 15cm
1/v = 1/f-1/u
1/v = 1/10-1/15
1/v = 3-2/30
1/v = 1/30
v = 30cm
30/15 = H1/5
15H1 = 150
H1/= 10cm
5) if u = 20cm
1/v = 1/f-1/u
1/v = 1/10-1/20
1/v = 2-1/20
1/v = 1/20
v = 20cm
20/20 = H1/5
20H1 = 100
H1 = 5cm
6) If u = 30cm
1/v = 1/f-1/u
1/v = 1/10-1/30
1/v = 3-1/30
1/v = 2/30
v = 30/2 cm
v =>15cm
15/30 = Hi/5
30H1 = 75
H1 = 75/30
H1 = 2.5cm
The correct choice is D .
Answer:
Part a)
Moment of inertia of the cylinder is given as

Part B)
Height of the cylinder is of no use here to calculate the inertia
Part C)
Since we don't know about the viscosity data of the soup inside the cylinder so we can't say directly about the moment of inertia of the cylinder as 
Explanation:
As we know that the inclined plane is of length L = 3 m
and its inclination is given as 25 degree
so we know that acceleration of center of mass of the cylinder is constant so we will have

so we have

now we know that



Now we have know that final speed of the cylinder due to pure rolling is given as



Part B)
Height of the cylinder is of no use here to calculate the inertia
Part C)
Since we don't know about the viscosity data of the soup inside the cylinder so we can't say directly about the moment of inertia of the cylinder as 