Answer:
t=67.7s
Explanation:
From this question we know that:
Vo = 6m/s
a = 1.8 m/s2
D = 1500m
And we also know that:
Replacing the known values:
Solving for t we get 2 possible answers:
t1 = -44.3s and t2 = 67.7s Since negative time represents an instant before the beginning of the movement, t1 is discarded. So, the final answer is:
t = 67.7s
Vector quantities have both magnitude and direction. Distance is a scalar quantity. It refers only to how far an object has traveled. For example, 4 feet is a distance; it gives no information about direction.
<span>
as we know that the velocity vectors are at right angles
magnitude = ?
hypotenuse of a right
triangle.
v^2 = 90^2 + 4^2
v^2 = 8116
Taking the square root of both sides here we get,
v = 90.1 m/s
hope it helps
</span>
Answer:

Explanation:
When a standing wave is formed with six loops means the normal mode of the wave is n=6, the frequency of the normal mode is given by the expression:

Where
is the length of the string and
the velocity of propagation. Use this expression to find the value of
.

The velocity of propagation is given by the expression:

Where
is the desirable variable of the problem, the linear mass density, and
is the tension of the cord. The tension is equal to the weight of the mass hanging from the cord:

With the value of the tension and the velocity you can find the mass density:


It depends because it’s might be lolilolololol 21212132