Answer:
The light used has a wavelenght of 4.51×10^-7 m.
Explanation:
let:
n be the order fringe
Ф be the angle that the light makes
d is the slit spacing of the grating
λ be the wavelength of the light
then, by Bragg's law:
n×λ = d×sin(Ф)
λ = d×sin(Ф)/n
λ = (3.2×10^-4 cm)×sin(25.0°)/3
= 4.51×10^-5 cm
≈ 4.51×10^-7 m
Therefore, the light used has a wavelenght of 4.51×10^-7 m.
<span>Inertia keeps us orbiting because any object with mass has the tendency to resist changes to their direction and speed of movement. Combine that with the interaction of the gravitational attraction of the sun, and that is what keeps Earth in orbit. The sun’s gravitational force is one that is proportional to Earth’s mass, and it acts in a way that is almost exactly perpendicular to Earth’s motion. This keeps Earth from spinning into the sun or far away from it.</span>
It does produce 'sound' ... a compression wave traveling through the air. But your ears don't hear a sound that's vibrating less than 20 or 30 times every second. If you could swing your pendulum that fast, you could hear the sound of its vibrations pushing the air around.
Answer:
final displacement lf = 0.39 m
Explanation:
from change in momentum equation:
![\delta p = m \sqrt(2g * y/x)* [\sqrt li + \sqrt lf]](https://tex.z-dn.net/?f=%5Cdelta%20p%20%3D%20m%20%5Csqrt%282g%20%2A%20y%2Fx%29%2A%20%5B%5Csqrt%20li%20%2B%20%5Csqrt%20lf%5D)
given: m = 0.4kg, y/x = 19/85, li = 1.9 m,
\delta p = 1.27 kg*m/s.
putting all value to get the final displacement value
![1.27 = 0.4\sqrt(2*9.81 *(19/85))* [\sqrt 1.9 + \sqrt lf]](https://tex.z-dn.net/?f=1.27%20%3D%200.4%5Csqrt%282%2A9.81%20%2A%2819%2F85%29%29%2A%20%5B%5Csqrt%201.9%20%2B%20%5Csqrt%20lf%5D)
final displacement lf = 0.39 m
Answer:
The wavelength can always be determined by measuring the distance between any two corresponding points on adjacent waves. In the case of a longitudinal wave, a wavelength measurement is made by measuring the distance from a compression to the next compression or from a rarefaction to the next rarefaction.
Explanation: