I bet she does just give her tule work on yourself
Answer:
Explanation:
a ) AM radio band (540–1600 kHz)
frequency = 540 kHz = 540 x 10³ Hz
wave length = velocity of light / frequency
= 3 x 10⁸ / 540 x 10³
= 555.55 m
frequency = 1600 kHz = 1600 x 10³ Hz
wave length = velocity of light / frequency
= 3 x 10⁸ / 1600 x 10³
= 187.5 m
maximum wavelength = 555.55 m
minimum wavelength = 187.5 m
b )
AM radio band (88 - 108 MHz)
frequency = 88 MHz = 88 x 10⁶ Hz
wave length = velocity of light / frequency
= 3 x 10⁸ / 88 x 10⁶
= 3.41 m
frequency = 108 MHz = 108 x 10⁶ Hz
wave length = velocity of light / frequency
= 3 x 10⁸ / 108 x 10⁶
= 2.78 m
maximum wavelength = 3.41 m
minimum wavelength = 2.78 m
<h2>Thus the force of friction is 235 N</h2>
Explanation:
When the bear was at the height of 14 m . Its potential energy = m g h
here m is the mass of bear , g is acceleration due to gravity and h is the height .
Thus P.E = 27 x 10 x 14 = 3780 J
The K.E of the bear just before hitting =
m v²
=
x 27 x ( 6.1 )² = 490 J
The force of friction f = P.E - K.E = 3290 J
Because the work done = Force x Distance
Thus frictional force =
= 235 N
Answer:
5. dispersion
6. 49.8°
Explanation:
5. Dispersion is the name given to the phenomenon of light of different wavelengths being bent differently. A rainbow is the result of light from a point source (the sun) being spread out by wavelength (color), a nice example of dispersion.
___
6. n = 1.31 is the ratio of the sine of the angle of refraction to the sine of the angle of incidence (for light passing to a medium of n = 1). When the angle of refraction is 90°, the angle of incidence is the "critical angle." So, ...
sin(90°)/sin(critical) = 1.31
critical angle = arcsin(1/1.31) ≈ 49.8°
Answer:
The right answer is D) the total momentum of the system is 0.047 kg · m/s toward the right.
Explanation:
Hi there!
The total momentum of the system is given by the sum of the momentum vectors of each cart. The momentum is calculated as follows:
p = m · v
Where:
p = momentum.
m = mass.
v = velocity.
Then, the momentum of the system will be the momentum of cart A plus the momentum of cart B (let´s consider the right as the positive direction):
mA · vA + mB · Vb
0.450 kg · 0.850 m/s + 0.300 kg · (- 1.12 m/s) = 0.047 kg · m/s
The right answer is D) the total momentum of the system is 0.047 kg · m/s toward the right.