Answer:
The moon Phobos orbits Mars
(mass = 6.42 x 1023 kg) at a distance
of 9.38 x 106 m. What is its period of
orbit?
Explanation:
Answer: 27.9816 x 10^3 is the period of orbit
Average speed = (total distance) / (total time)
Average speed = (4+7+1+2 blox) / (1 hour)
<em>Average speed = 14 blocks/hour</em>
<em></em>
I'm gonna go out on a limb here and take a wild guess:
I'm guessing that there's another question glued onto the end of this one, and it asks you to find either her displacement or her average velocity. I'm so sure of this that I'm gonna give you the solution for that too. If there's no more question, then you won't need this, and you can just discard it. I won't mind.
Average velocity = (displacement) / (time for the displacement)
"Displacement" = distance and direction from the start point to the end point, regardless of how she got there.
Displacement = (4E + 7W + 1E + 2W)
Displacement = (5E + 9W)
<em>Displacement = 4 blocks west</em>
Average velocity = (4 blocks west) / (1 hour)
<em>Average velocity = 4 blocks/hour West</em>
Answer:
m = 4
Explanation:
We have,
You apply a force of 600 N to the branch which acts as a lever. It means it is input force, IF = 600 N
The rear of the truck weighs 2,400 N. It means it is output force, OF = 2400 N
The ratio of output force to the input force is equal to the mechanical advantage of the lever arm. It is given by :

So, the mechanical gain of the lever arm is 4.
Pour the entire components into water.
First the iron filings can be separated using a magnet as iron is a magnetic element.
By pouring the mixture into water, it allows the salt to dissolve in the water, while the sand will not.
Next we can run this solution through a filtration device to separate the sand from the water.
Now all that's left is to let the water evaporate so that the salt will be exposed that dissolved into the water.