The density of the material would be
25/6 grams per cm^3.
to obtain the result above this is what we do:
density is calculated as: (the mass of the given material or object) / volume of the material
which leads us to 50grams /12cm^3
Answer:
a)n= 3.125 x electrons.
b)J= 1.515 x A/m²
c) =1.114 x m/s
d) see explanation
Explanation:
Current 'I' = 5A =>5C/s
diameter 'd'= 2.05 x m
radius 'r' = d/2 => 1.025 x m
no. of electrons 'n'= 8.5 x
a) the amount of electrons pass through the light bulb each second can be determined by:
I= Q/t
Q= I x t => 5 x 1
Q= 5C
As we know that: Q= ne
where e is the charge of electron i.e 1.6 x C
n= Q/e => 5/ 1.6 x
n= 3.125 x electrons.
b) the current density 'J' in the wire is given by
J= I/A => I/πr²
J= 5 / (3.14 x (1.025x )²)
J= 1.515 x A/m²
c) The typical speed'' of an electron is given by:
=
=1.515 x / 8.5 x x |-1.6 x |
=1.114 x m/s
d) According to these equations,
J= I/A
= =
If you were to use wire of twice the diameter, the current density and drift speed will change
Increase in the diameter increase the cross sectional area and decreases the current density as it has inverse relation.
Also drift velocity will decrease as it is inversely proportional to the area
Nuclear power plants, wind farms, water farms, and geothermal heating
Answer:
Part a)
Part B)
Part C)
Explanation:
Part A)
As we know that ball is hanging from the top and its angle with the vertical is 20 degree
so we will have
Part B)
Here we can use energy theorem to find the distance that it will move
Part C)
At terminal speed condition we know that
Answer:
The instantaneous speed of the object after the first five seconds is 12.5 m/s.
(C) is correct option.
Explanation:
Given that,
An object starts at rest. Its acceleration over 30 seconds.
We need to calculate the instantaneous speed of the object after the first five seconds
We know that,
Area under the acceleration -time graph gives speed.
According to figure,
Hence, The instantaneous speed of the object after the first five seconds is 12.5 m/s.