Answer:
50 m
Explanation:
F = ma
10 N = (10 kg) a
a = 1 m/s²
Given:
v₀ = 0 m/s
a = 1 m/s²
t = 10 s
Find: Δx
Δx = v₀ t + ½ at²
Δx = (0 m/s) (10 s) + ½ (1 m/s²) (10 s)²
Δx = 50 m
Answer:
The box displacement after 6 seconds is 66 meters.
Explanation:
Let suppose that velocity given in statement represents the initial velocity of the box and, likewise, the box accelerates at constant rate. Then, the displacement of the object (
), in meters, can be determined by the following expression:
(1)
Where:
- Initial velocity, in meters per second.
- Time, in seconds.
- Acceleration, in meters per square second.
If we know that
,
and
, then the box displacement after 6 seconds is:

The box displacement after 6 seconds is 66 meters.
Answer:
r2 = 1 m
therefore the electron that comes with velocity does not reach the origin, it stops when it reaches the position of the electron at x = 1m
Explanation:
For this exercise we must use conservation of energy
the electric potential energy is
U =
for the proton at x = -1 m
U₁ =
for the electron at x = 1 m
U₂ =
starting point.
Em₀ = K + U₁ + U₂
Em₀ =
final point
Em_f =
energy is conserved
Em₀ = Em_f
\frac{1}{2} m v^2 - k \frac{e^2}{r+1} + k \frac{e^2}{r-1} = k e^2 (- \frac{1}{r_2 +1} + \frac{1}{r_2 -1})
\frac{1}{2} m v^2 - k \frac{e^2}{r+1} + k \frac{e^2}{r-1} = k e²(
)
we substitute the values
½ 9.1 10⁻³¹ 450 + 9 10⁹ (1.6 10⁻¹⁹)² [
) = 9 109 (1.6 10-19) ²(
)
2.0475 10⁻²⁸ + 2.304 10⁻³⁷ (5.0125 10⁻³) = 4.608 10⁻³⁷ (
)
2.0475 10⁻²⁸ + 1.1549 10⁻³⁹ = 4.608 10⁻³⁷
r₂² -1 = (4.443 10⁸)⁻¹
r2 =
r2 = 1 m
therefore the electron that comes with velocity does not reach the origin, it stops when it reaches the position of the electron at x = 1m
Answer:
The speed of molecule decreases and temperature also decreases
Explanation:
Kinetic energy of the molecules of a subsance is directly proportional to the temperature of molecule So as the kinetic energy decrease, temperature also decreases. decreses their speed.