1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zzz [600]
2 years ago
11

In the water cycle ,matter moves towards of gravity during

Physics
1 answer:
Semenov [28]2 years ago
3 0
In the water cycle, matter moves against the pull of gravity during infiltration and evaporation transpiration and infiltration precipitation and infiltration evaporation and transpiration
You might be interested in
A 10 kg mass car initially at rest on a horizontal track is pushed by a horizontal force of 10 N magnitude. If we neglect the fr
vlada-n [284]

Answer:

50 m

Explanation:

F = ma

10 N = (10 kg) a

a = 1 m/s²

Given:

v₀ = 0 m/s

a = 1 m/s²

t = 10 s

Find: Δx

Δx = v₀ t + ½ at²

Δx = (0 m/s) (10 s) + ½ (1 m/s²) (10 s)²

Δx = 50 m

5 0
2 years ago
The thunderbolt bobsled team is training for Olympic Gold. During practice they start a run with a speed of 0.57 m/s, they compl
aleksandr82 [10.1K]
acceleration=\frac{\Delta\ velocity}{\Delta\ time}\\\\
v_{initial}=0,57m/s\\
distance=1360m\\ \Delta\ time=89,49seconds\\\\
v_{final}-v_{initial}=\frac{distance}{time}\\
v_{final}=\frac{distance}{time}+v_{initial}\\
v_{final}=\frac{1360}{89,49}+0,57\\\\v_{final}=15,77\frac{m}{s}\\\\
acceleration=\frac{15,77-0,57}{89,49}=0,17\frac{m}{s^2}\\\\ \boxed{acceleration=0,17\frac{m}{s^2}}
6 0
3 years ago
Q7) A box sliding with a velocity of 5 m/s accelerates at 2 m/s^2. How
grigory [225]

Answer:

The box displacement after 6 seconds is 66 meters.

Explanation:

Let suppose that velocity given in statement represents the initial velocity of the box and, likewise, the box accelerates at constant rate. Then, the displacement of the object (\Delta s), in meters, can be determined by the following expression:

\Delta s = v_{o}\cdot t+\frac{1}{2}\cdot a\cdot t^{2} (1)

Where:

v_{o} - Initial velocity, in meters per second.

t - Time, in seconds.

a - Acceleration, in meters per square second.

If we know that v_{o} = 5\,\frac{m}{s}, t = 6\,s and a = 2\,\frac{m}{s^{2}}, then the box displacement after 6 seconds is:

\Delta s = 66\,m

The box displacement after 6 seconds is 66 meters.

5 0
3 years ago
An electron and a proton are held on an x axis, with the electron at x = + 1.000 m
mixas84 [53]

Answer:

  r2 = 1 m

therefore the electron that comes with velocity does not reach the origin, it stops when it reaches the position of the electron at x = 1m

Explanation:

For this exercise we must use conservation of energy

the electric potential energy is

          U = k \frac{q_1q_2}{r_{12}}

for the proton at x = -1 m

          U₁ =- k \frac{e^2 }{r+1}

for the electron at x = 1 m

          U₂ = k \frac{e^2 }{r-1}

starting point.

        Em₀ = K + U₁ + U₂

        Em₀ = \frac{1}{2} m v^2 - k \frac{e^2}{r+1} + k \frac{e^2}{r-1}

final point

         Em_f = k e^2 ( -\frac{1}{r_2 +1} + \frac{1}{r_2 -1})

   

energy is conserved

        Em₀ = Em_f

        \frac{1}{2} m v^2 - k \frac{e^2}{r+1} + k \frac{e^2}{r-1} = k e^2 (- \frac{1}{r_2 +1} + \frac{1}{r_2 -1})              

       

        \frac{1}{2} m v^2 - k \frac{e^2}{r+1} + k \frac{e^2}{r-1} = k e²(  \frac{2}{(r_2+1)(r_2-1)} )

we substitute the values

½ 9.1 10⁻³¹ 450 + 9 10⁹ (1.6 10⁻¹⁹)² [ - \frac{1}{20+1} + \frac{1}{20-1} ) = 9 109 (1.6 10-19) ²( \frac{2}{r_2^2 -1} )

          2.0475 10⁻²⁸ + 2.304 10⁻³⁷ (5.0125 10⁻³) = 4.608 10⁻³⁷ ( \frac{1}{r_2^2 -1} )

          2.0475 10⁻²⁸ + 1.1549 10⁻³⁹ = 4.608 10⁻³⁷     \frac{1}{r_2^2 -1}

          \frac{2.0475 \ 10^{-28} }{1.1549 \ 10^{-37} } = \frac{1}{r_2^2 -1}

          r₂² -1 = (4.443 10⁸)⁻¹

           

          r2 = \sqrt{1 + 2.25 10^{-9}}

          r2 = 1 m

therefore the electron that comes with velocity does not reach the origin, it stops when it reaches the position of the electron at x = 1m

4 0
3 years ago
What happens to molecules when their kinetic energy decreases?
Illusion [34]

Answer:

The speed of molecule decreases and temperature also decreases

Explanation:

Kinetic energy of the molecules of a subsance is directly proportional to the temperature of molecule So as the kinetic energy decrease, temperature also decreases. decreses their speed.

6 0
3 years ago
Other questions:
  • To test a slide at an amusement park, a block of wood with mass 3.00 kgkg is released at the top of the slide and slides down to
    12·1 answer
  • He is best known for publishing an almanac based on my astronomical calculations. Who is it?
    14·1 answer
  • All waves carry a) energy B) light C) matter D) particles
    15·2 answers
  • A solid conducting sphere of radius 2.00 cm has a charge of 6.77 μC. A conducting spherical shell of inner radius 4.00 cm and ou
    5·1 answer
  • What is the net force when a pair of balanced forces acts on an object
    9·2 answers
  • How do you calculate the electric force by object a exerted on object a (itself)?
    6·1 answer
  • What will happen to plant height if the amount of available light is reduced due to global dimming?
    8·1 answer
  • Do substances that heat up quickly have high or low specific heat capacity?
    5·1 answer
  • Which of the following changes will increase the frequency of an oscillating pendulum?
    8·1 answer
  • One particle has a charge of -1.87 x 10-9 C, while another particle has a charge of -1.10 x 10-9 C. If the two particles are sep
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!