The given mass of cobalt chloride hydrate = 2.055 g
A sample of cobalt chloride hydrate was heated to drive off waters of hydration and the anhydrate was weighed.
The mass of anhydrous cobalt chloride = 1.121 g anhydrate.
The mass of water lost during heating = 2.055 g - 1.121 g = 0.934 g
Converting mass of water of hydration present in the hydrate to moles using molar mass:
Mass of water = 0.934 g
Molar mass of water = 18.0 g/mol
Moles of water = 
The answer is C because it is believed that those two were once connected
Answer:
7650
Explanation:
formula- multiply the volume value by 1e+6
Answer:
Check the explanation
Explanation:
AT = A0 e(-T/H)
... where A0 is the starting activity, AT is the activity at some time T, and H is the half-life, in units of T.
Substituting what we know, we get...
0.71 = (1) e(-T/5730)
Solve for T...
loge(0.71) = -T/5730
T = -loge(0.71)(5730)
T = 1962 (conservatively rounded, T = 2000)
similarly for all
for aboriginal charcoal
0.28 = (1) e(-T/5730)
Solve for T...
loge(0.28) = -T/5730
T = -loge(0.28)(5730)
T = 7294 (conservatively rounded, T = 7000)
for mayan headdress
0.89 = (1) e(-T/5730)
Solve for T...
loge(0.89) = -T/5730
T = -loge(0.89)(5730)
T = 667 (conservatively rounded, T = 700)
for neanderthal
0.05 = (1) e(-T/5730)
Solve for T...
loge(0.05) = -T/5730
T = -loge(0.05)(5730)
T = 17165 (conservatively rounded, T = 17000)
The cell notation is:

here in cell notation the left side represent the anodic half cell where right side represents the cathodic half cell
in anodic half cell : oxidation takes place [loss of electrons]
in cathodic half cell: reduction takes place [gain of electrons]
1) this is a galvanic cell
2) the standard potential of cell will be obtained by subtracting the standard reduction potential of anode from cathode


Therefore

3) as the value of emf is positive the reaction will be spontaneous as the free energy change of reaction will be negative
Δ
As reaction is spontaneous and there will be conversion of chemical energy to electrical energy it is a galvanic cell.