Answer: Potassium iodide
Explanation: their you go
Answer:
The answer to the questions is;
In terms of standing waves, the listener moves from a location with high amplitude to one with lower amplitude or vibration (anti-node to node)
The distance 4.1 cm is equivalent to λ/4
Explanation:
For standing waves we have is a stationary wave comprising of two opposite direction moving waves that have equal amplitude and frequency, resulting in the superimposition of the waves. As such certain points are fixed along the wave path that is the peaks amplitude of the wave oscillation is constant at a particular point. A node occurring at a point and an anti-node occurring at another fixed point
When the listener moves 4.1 cm he or she has left the anti-node to the node hence the faintness of the sound
The distance from the node to the anti-node is 1/4 wavelength, or 1/4×λ
Therefore 4.1 cm is λ/4
To solve this problem we will apply the concepts related to the Doppler effect. According to this concept, it is understood as the increase or decrease of the frequency of a sound wave when the source that produces it and the person who captures it move away from each other or approach each other. Mathematically this can be described as

Here,
= Original frequency
= Velocity of the observer
= Velocity of the speed
Our values are,



Using the previous equation,

Rearrange to find the velocity of the observer

Replacing we have that


Therefore the velocity of the observer is 16.2m/s
<span>The larger the current flowing in a wire, the stronger the magnetic field
is that surrounds the wire.
That's why, if you want to make an electromagnet stronger, one way to
do it is to add another battery. By increasing the voltage, you'll increase
the current flowing in the coils of wire, and the electromagnet will be stronger.</span>
With the increase in the temperature of the star, the brightness of the stars will also increase.
<u>Explanation:</u>
The brightness and surface temperature of stars ordinarily increment with age. A star stays close to its underlying situation on the fundamental arrangement until a lot of hydrogen in the center has been devoured, at that point starts to advance into a progressively brilliant star.
The brightness of a star relies upon its structure and how far it is from the planet. Space experts characterize star brilliance as far as clear extent — how splendid the star shows up from Earth — and outright greatness — how brilliant the star shows up at a standard separation