The period of the tan function is π so (∅ + π) would yield the same value as ∅
F(∅ + π) = 3
Answer:
3.88m/s
Explanation:
Using the law of conservation of momentum
m1u1+m2u2 = (m1+m2)v
m1 and m2 are the masses
u1 and 2 are the initial velocities
v is the final velocity
Given
m1 = 64kg
u1 = 4.2m/s
m2 = 25kg
u2 = 3.2m/s
Required
Final velocity v
Substitute the given values into the formula
64(4.2)+25(3.2) = (65+25)v
268.8+80 = 90v
348.8 = 90v
v = 348.8/90
v = 3.88m/s
Hence the velocity of the kayak after the swimmer jumps off is 3.88m/s
Because plate movements have raised ancient sea floors above sea level, _________?
<span>Answer : Limestone that began as coral reefs can be found on the continents.</span>
I think I remember hold on let me see if I can solve it
The correct answer is Metals.
Generally, the specific heat of metals is low. Very high specific heat exists in water.A physical feature of matter known as heat capacity or thermal capacity is the quantity of heat that must be applied to an object in order to cause a unit change in temperature. Heat capacity is measured in joules per kelvin (J/K), the SI unit. A broad property is heat capacity. Use the following equation to determine heat capacity: heat capacity = E / T, where E is the quantity of delivered heat energy and T is the change in temperature. The formula would be as follows, for instance, if it takes 2,000 Joules of energy to raise a block's temperature by 5 degrees Celsius: 2,000 Joules per °C is the heat capacity.
Learn more about heat capacity here :-
brainly.com/question/13499849
#SPJ4