Answer:
1. Nonmetals.
2. Likely to form anions (except the noble gases).
3. All of these
4. Easily reduced (except the noble gases).
Explanation:
Elements with high electronegativities are found towards the upper right corner of the Periodic Table. Thus, they have all the above properties.
The balanced equation for the reaction between Mg and O₂ is as follows
2Mg + O₂ --> 2MgO
stoichiometry between Mg and O₂ is 2:1
number of Mg reacted - 4.00 mol
if 2 mol of Mg reacts with 1 mol of O₂
then 4.00 mol of Mg requires - 1/2 x 4.00 = 2.00 mol of O₂
then the mass of O₂ required - 2.00 mol x 32.0 g/mol = 64.0 g
64.0 g of O₂ is required for the reaction
Answer:
13.20
Explanation:
Step 1: Calculate the moles of Ba(OH)₂
The molar mass of Ba(OH)₂ is 171.34 g/mol.
0.797 g × 1 mol/171.34 g = 4.65 × 10⁻³ mol
Step 2: Calculate the molar concentration of Ba(OH)₂
Molarity is equal to the moles of solute divided by the liters of solution.
[Ba(OH)₂] = 4.65 × 10⁻³ mol/60 × 10⁻³ L = 0.078 M
Step 3: Calculate [OH⁻]
Ba(OH)₂ is a strong base according to the following equation.
Ba(OH)₂ ⇒ Ba²⁺ + 2 OH⁻
The concentration of OH⁻ is 2/1 × 0.078 M = 0.16 M
Step 4: Calculate the pOH
pOH = -log OH⁻ = -log 0.16 = 0.80
Step 5: Calculate the pH
We will use the following expression.
pH + pOH = 14
pH = 14 - 0.80 = 13.20