It depends on your definition of “ancient.” Radiometric dating using Carbon-14 can reliably date back to about 50,000 years, uranium-lead or lead-lead dating can date back multiple millions, potassium-argon dating can reach 1.5 billion, and rubidium-strontium can reach 50 billion (nearly 4x the age of the universe). It depends on the context in which this question is being asked.
Answer:
g = 8.61 m/s²
Explanation:
distance of the International Space Station form earth is 200 Km
mass of the object = 1 Kg
acceleration due to gravity on earth = 9.8 m/s²
mass of earth = 5.972 x 10²⁴ Kg
acceleration due to gravity = ?
r = 6400 + 200 = 6800 Km = 6.8 x 10⁶ n
using formula


g = 8.61 m/s²
We have that the most stable nuclei are the ones with the highest average binding energy. We see that Nitrogen has a mass number of 15 and that in this region of the graph average binding energy is low. Silver and Gold are along a line where there is a constant decline in average binding energy; silver has more than gold. However, we see that at the start of this decline, there is Fe 56. This region has the elements with the highest average binding energy; Nickel with a mass number of 58 is right there and thus it is the most stable nucleus out of the listed ones.
It would be funny because . I will not be good