Answer:
Explanation:
Taking into account the definition of Avogadro's Number, the correct answers are:
1 mole of any element contains 6.023×10²³ atoms
1 mole of any compound contains 6.023×10²³ molecules
You have to know that Avogadro's Number or Avogadro's Constant is called the number of particles that make up a substance (usually atoms or molecules) and that can be found in the amount of one mole of said substance. Its value is 6.023×10²³ particles per mole.
Avogadro's number represents a quantity without an associated physical dimension, so it is considered a pure number that allows describing a physical characteristic without an explicit dimension or unit of expression.
Avogadro's number applies to any substance, because the number of elementary units in a mole of a substance is, by definition, a constant that does not depend on the material or the type of particle considered.
So, in this case, the correct answers are:
1 mole of any element contains 6.023×10²³ atoms
1 mole of any compound contains 6.023×10²³ molecules
hope that help you mark me as brinilylist pls
Answer:
- <u>two molecules of ammonia are formed by the reaction of one nitrogen and three hydrogen molecules.</u>
Explanation:
The balanced chemical equation provides information on:
- <u>Reactants</u>: those are the compounds that appear of the left side of the equation, each with its chemical formula.
- <u>Products</u>: those are the compounds that appear on the right side of the equation, again, each with its chemical formula.
- <u>Ratio</u>: the coefficients of each compound (the number to the left of the chemical formula) represent the ratio of the number of molecules that react and are formed.
In the given equation you have:
- Equation: N₂ + 3H₂ → 2NH₃
- The coefficients are 1 for nitrogen, 3 for hydrogen, and 2 for ammonia. Hence, 2 molecules of ammonia are formed by the reaction of 1 molecule of nitrogen and 3 molecules of hydrogen.
Answer: Heating the hydrated forms of cobalt chloride reverses the reactions above, returning cobalt chloride to the blue, water-free, or anhydrous, state. Water is "liberated" in these reactions, known as dehydration reactions.
Explanation: