Answer:
The distance from Earth to the sun is called an astronomical unit, or AU, which is used to measure distances throughout the solar system.
An aqueous solution in a 55 gallon (208 l drum), characterized by minimal buffering capacity, received 4kg of phenol and 1.5 kg of sodium phenate. What is the ph of the solution. The pka of phenol = 9.98. Mw of phenol and sodium phenate are 94 g/mol and 116 g/mol, respectively.
Volume of solution = 55 gallons = 208.2 L [ 1 gallon = 3.78 L]
moles of phenol = mass / molar mass = 4000 g / 94 = 42.55 moles
moles of sodium phenate = mass / molar mass = 1500 / 116 = 12.93 moles
pKa of phenol = 9.98
We know that the pH of buffer is calculated using Hendersen Hassalbalch's equation
pH = pKa + log [salt] / [acid]
volume is same for both the sodium phenate and phenol has we can directly take the moles of each in the formula
pH = 9.98 + log [12.93 / 42.55] = 9.46
Given:
P = 123 kPa
V = 10.0 L
n = 0.500 moles
T = ?
Assume that the gas ideally, thus, we can use the ideal gas equation:
PV = nRT
where R = 0.0821 L atm/mol K
123 kPa * 1 atm/101.325 kPa * 10.0 L = 0.500 moles * 0.0821 Latm/molK * T
solve for T
T = 295.72 K<span />
Electrons are electrochemically negatively charged particles that move random around the nucleus. They have a relatively small mass compared to Protons and Neutrons. They are found in electron clouds that surround the nucleus and their movement and properties provide for the bonding characteristics of each atom.
Answer:
Therefore, dissolving salt in water is a chemical change. The reactant (sodium chloride, or Na-Cl) is different from the products (sodium cation and chlorine anion). ... In contrast, dissolving a convalent compound like sugar does not result in a chemical reaction.
Explanation: