Answer:
x = 4,138 m
Explanation:
For this exercise, let's use the rotational equilibrium equation.
Let's fix our frame of reference on the left side of the pivot, the positive direction for anti-clockwise rotation
∑ τ = 0
n₁ 0 - W L / 2 + n₂ 4 - W_woman x = 0
x = (- W L / 2 + 4n2) / W_woman
Let's reduce the magnitudes to the SI System
M = 6 lbs (1 kg / 2.2 lb) = 2.72 kg
M_woman = 130 lbs = 59.09 kg
Let's write the transnational equilibrium equation
n₁ + n₂ - W - W_woman = 0
n₁ + n₂ = W + W_woman
n₁ + n₂ = (2.72 + 59.09) 9.8
At the point where the system begins to rotate, pivot 1 has no force on it, so its relation must be zero (n₁ = 0)
n₂ = 605,738 N
Let's calculate
x = (-2.72 9.8 6/2 + 4 605.738) / 59.09 9.8
x = 4,138 m
Answer:
The solar nebula became hot and dense because of that it pulling in more gas. This flattened into a rotating disk. It spun faster and faster, forming the Sun.
Explanation:
hope this helps
Explanation:
Since the balloon is not accelerating means that the net force on the balloon is zero. This implies that the weight of balloon must be equal to the buoyant force on balloon.
Hence, the buoyant force equals the weight of air displaced by the balloon, also 20,000 N.
Weight of the air displaced = density of air × volume
The density of air at 1 atm pressure and 20º C is 1.2 kg/m³
the volume V = 20,000/(1.2×9.8) = 1700 m³
Previous rocks melt and collide and to form igneous rocks.
Igneous rocks disintegrate due to weather disruptions and get carried away by water, where they form sedimentary rock strata by lithification.
Igneous and sedimentary change by heat and pressure to form metamorphic rocks.
Metamorphic rocks melt and become igneous rocks.