It has to be a metal, it can't be anything else.
Answer:
Energy lost is 7.63×10⁻²⁰J
Explanation:
Hello,
I think what the question is requesting is to calculate the energy difference when an excited electron drops from N = 15 to N = 5
E = hc/λ(1/n₂² - 1/n₁²)
n₁ = 15
n₂ = 5
hc/λ = 2.18×10⁻¹⁸J (according to the data)
E = 2.18×10⁻¹⁸ (1/n₂² - 1/n₁²)
E = 2.18×10⁻¹⁸ (1/15² - 1/5²)
E = 2.18×10⁻¹⁸ ×(-0.035)
E = -7.63×10⁻²⁰J
The energy lost is 7.63×10⁻²⁰J
Note : energy is lost / given off when the excited electron jumps from a higher energy level to a lower energy level
The process in which the concentration of the solution is lessened by the addition of water is said to be dilution and equation of dilution relates the initial concentration and volume of stock solution with the final concentration and volume of the solution.
Formula is given by:
(1)
where,
is the initial concentration
is the initial volume
is the final concentration
is the final volume
Now,
= 0.850 M
= 4.12 L
=?
= 10.00 L
Substitute the give values in formula (1),


= 
Thus, the final concentration of the
solution = 
Answer:
mixture
Explanation:
there was leftover components meaning there was something mixed into the liquid
Answer: Major scale and minor scale both relate the precision of measurements with more true value of measurement.
Explanation:
Major scale in a measuring device is maximum unit value on the scale that can be measured.
Minor scale in a measuring device is a least unit value on the scale that can be measured.
In a metric ruler major scale is 1 cm and minor scale is 0.1 mm which means one can measure accurate value up-to one decimal point and in 10 ml of graduated cylinder major scale division is 1 ml minor scale division is 0.01.