Answer:
197.263157895 m/s
169.491525424 m/s
Explanation:
x Denotes position
t Denotes time
Average velocity is given by

The average velocity is 197.263157895 m/s

The average velocity is 169.491525424 m/s
To solve this problem it is necessary to apply the equations related to the conservation of momentum. Mathematically this can be expressed as

Where,
= Mass of each object
= Initial velocity of each object
= Final Velocity
Since the receiver's body is static for the initial velocity we have that the equation would become



Therefore the velocity right after catching the ball is 0.0975m/s
Answer:
response
Explanation:
Acceleration is your changing Velocity. An object that is ACCELERATING is experiencing a change in velocity. usually positive. if an object such as a car reduces velocity, it is called deceleration
you must have a rock first of all then the cycle continues
Answer:
C. strike-slip fault
Explanation:
The scientist must have observed a strike- slip fault.
A fault is an evidence of brittle deformation of the crust in the presence of applied stress on earth materials. Here, the earth material is the rock subjected to tension.
Where a fault occurs, there must have been movement between two blocks of rocks. The direction of movement helps us to delineate the fault type.
- When two blocks moves past each other horizontally, it is a strike-slip fault like rubbing your palms together.
- When a block moves in the direction of the dip, it forms a dip-slip fault which results in a fault-block mountain characterized by graben and horst systems.
Option A, Plateau is a table landform usually a mountain with flat peak.
Option B is a bowl shaped stratigraphic pattern in which the youngest sequence is at the core of the strata or a fold.
So, the most fitting option is C, a strike-slip fault.