<span>its kinetic energy is 7350kJ
</span>
Kinetic energy is given as =

Now, m = 12 gms = 0.012 kg
And, velocity = 35 kilometers/second = 35000 m/sec
Kinetic energy is given as =
![\frac{1}{2} 0.012 kg * 35000*35000 m/[tex] s^{2}](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B2%7D%200.012%20kg%20%2A%2035000%2A35000%20m%2F%5Btex%5D%20s%5E%7B2%7D%20)
= 6

×1225 ×

m/
= 7350 kJ
Answer:
True.
Explanation:
During the late summers the SST (sea surface temperature) rises the most which made the wind above the sea moist and warm. Global warming is also one of the cause of the rise in sea surface temperatures. Then the Coriolis effect due to the earth's rotation make these winds to rotate which results in the formation of the cyclones mostly in the areas near to equator.
<em>The velocity vector of an object with a centripetal acceleration is never tangent to the circular path is False.</em>
Answer: <em>False</em>
Explanation:
Centripetal acceleration is a feature of objects in uniform circular motion. In that case velocity is along the tangent drawn to the circular path. For an object to be called accelerating its velocity should be variable but speed needn’t.
Even when the speed is constant an object can be accelerating. The direction of velocity of an object in uniform circular motion keeps changing continuously. This change in velocity in uniform circular motion is equal to the centripetal acceleration.
Answer: False
Explanation:
The potential energy is called organized energy because it is not related to the mass movement of the molecules.
Heat is disorganized energy because it is related to the mass movement of the molecules. Entropy is related to the randomness of the molecules.
If the randomness of the system increases then the entropy will increase. The entropy of the system either remains constant or increases.
The entropy of the system never decreases.
Therefore, the answer will be false.
Answer:
denser media the speed is greater
Explanation:
The speed of sound is given by the relation

where B is the volume modulus and ρ the density of the medium
When analyzing the previous expression, the amplitude of the sound depends on the energy carried by the wave.
Wave speed, is given by the relationship between two magnitudes, we analyze their values for different media. The volume modulus for gases has values of the order of 10⁵ Pa, for liquids of the order of 10⁹ Pa and for solids of 10¹⁰ to 10¹¹ Pa, while the density has values of the order of 10⁻¹ to 10⁰ kg / m³ for gases for liquids 10³ kg / m³ and for solids of the order of 10³ to 10⁴ kg / m³
let's find the order of magnitude of the speed of sound
Gases
v =√ 10⁵/10⁰ = 300 m / s
liquids
v =√ 10⁹/10³ = 1000 m / s
solid
v = √ 10¹¹/ 10⁴ = 3000 m / s
We can see that in denser media the speed is greater