The answer is
D. in a straightforward, objective manner
Answer:

Explanation:
Given that,
Charge, 
Revolution = 7 rev
magnetic field, B = 45 mT
Time, t = 1.29 ms
We need to find the mass of the ion. Let m be the mass. The formula for the mass in terms of time period is given by :

So, the mass of the ion is equal to
.
Answer:
Hiiiiiiii........where r u frm??
The kinematic equations of motion that apply here are<span>y(t)=votsin(θ)−12gt2</span>and<span>x(t)=votcos(θ)</span>Setting y(t)=0 yields <span>0=votsin(θ)−12gt2</span>. If we solve for t, we obtain, by factoring,<span>t=<span>2vsin(θ)g</span></span>Substitute this into our equation for x(t). This yields<span>x(t)=<span><span>2v2cos(θ)sin(θ)</span>g</span></span><span>This is equal to x=<span><span>v^2sin(2θ)</span>g</span></span>Hence the angles that have identical projectiles are have the same range via substitution in the last equation is C. <span> 60.23°, 29.77° </span>
A gas has to become ionisied in order to become a conductor. It must have a chain reaction in which atoms in it became unstable, in which they loose stabile electronic configuration. In order for a gas to become a conductor, it must have free particles, and it can happen only in ionisied gas.