<u>Answer</u>
8. 2 Hz
9. 0.5 seconds
10. 20 cm
<u>Explanation</u>
<u>Q 8</u>
Frequency is the number of oscillation in a unit time. It is the rate at which something repeats itself in a second.
In this case, the spring bob up and down 2 times per second.
∴ Frequency = 2 Hz
<u>Q 9</u>
Period is the time taken to complete one oscillation.
2 oscillations takes 1 second
1 oscillation = 1/2 seconds.
∴ Period = 0.5 seconds
<u>Q 10</u>
Amplitude is the the maximum displacement of the spring.
In this case the spring bob up 20 cm. This is it's displacement.
∴ Amplitude = 20 cm
Answer:
If this is a multiple choice question, then the answer is D.
Explanation:
Compounds are composed of atoms, which are composed of subatomic particles and consist of matter. Since they are composed of atoms rather than vice-versa, compounds cannot be found inside atoms and are not the most basic form of matter (ruling out A and C). A pure substance contains atoms, which are each composed of subatomic particles. Therefore, a pure substance must have atoms if it contains subatomic particles (ruling out B). The only answer left is D.
Answer:
condensing
Explanation:
Condensing is the word used to indicate the change of state of a substance from vapor to liquid, as in this case. During condensation, the substance releases thermal energy to the environment, therefore the kinetic energy of the molecules in the vapor decreases until they become closer to each other and they start to be affected by the intermolecular forces and so the substance becomes a liquid.
Answer:
Time period for Simple pendulum, 
Explanation:
The Simple Pendulum
Consider a small bob of mass
is tied to extensible string of length
that is fixed to rigid support. The bob is oscillating in the plane about verticle.
Let
is the angle made by string with vertical during oscillation.
Vertical component of the force on bob,
Negative sign shows that its opposing the motion of bob.
Taking
as very small angle then, 
Let
is the displacement made by bob from its mean position ,
then, 
so,
........(1)
Since, pendulum is in hormonic motion,
as we know, 
where
is the constant and 
.........(2)
From equation (1) and (2)


Since, 

