1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
expeople1 [14]
3 years ago
9

4. How is photosynthesis a carbon storing process?​

Chemistry
1 answer:
MariettaO [177]3 years ago
4 0

Carbon dioxide (CO2) in the atmosphere is necessary for plants and trees to grow. Forests play a specific and important role in the global carbon cycle by absorbingcarbon dioxide duringphotosynthesis, storing carbonabove- and belowground, and producing oxygen as a by-product of photosynthesis.

You might be interested in
Two solutions namely, 500 ml of 0.50 m hcl and 500 ml of 0.50 m naoh at the same temperature of 21.6 are mixed in a constant-pre
weeeeeb [17]

24.6 ℃

<h3>Explanation</h3>

Hydrochloric acid and sodium hydroxide reacts by the following equation:

\text{HCl} \; (aq) + \text{NaOH} \; (aq) \to \text{NaCl} \; (aq) + \text{H}_2\text{O} \; (aq)

which is equivalent to

\text{H}^{+} \; (aq) + \text{OH}^{-} \; (aq) \to \text{H}_2\text{O}\; (l)

The question states that the second equation has an enthalpy, or "heat", of neutralization of -56.2 \; \text{kJ}. Thus the combination of every mole of hydrogen ions and hydroxide ions in solution would produce 56.2 \; \text{kJ} or 56.2 \times 10^{3}\; \text{J} of energy.

500 milliliter of a 0.50 mol per liter "M" solution contains 0.25 moles of the solute. There are thus 0.25 moles of hydrogen ions and hydroxide ions in the two 0.500 milliliter solutions, respectively. They would combine to release 0.25 \times 56.2 \times 10^{3} = 1.405 \times 10^{4} \; \text{J} of energy.

Both the solution and the calorimeter absorb energy released in this neutralization reaction. Their temperature change is dependent on the heat capacity <em>C</em> of the two objects, combined.

The question has given the heat capacity of the calorimeter directly.

The heat capacity (the one without mass in the unit) of water is to be calculated from its mass and <em>specific</em> heat.

The calorimeter contains 1.00 liters or 1.00 \times 10^{3} \; \text{ml} of the 1.0 gram per milliliter solution. Accordingly, it would have a mass of 1.00 \times 10^{3} \; \text{g}.

The solution has a specific heat of 4.184 \; \text{J} \cdot \text{g}^{-1} \cdot \text{K}^{-1}. The solution thus have a heat capacity of 4.184 \times 1.00 \times 10^{3} = 4.184 \times 10^{3} \; \text{J} \cdot\text{K}^{-1}. Note that one degree Kelvins K is equivalent to one degree celsius ℃ in temperature change measurements.

The calorimeter-solution system thus has a heat capacity of 4.634 \times 10^{3} \; \text{J} \cdot \text{K}^{-1}, meaning that its temperature would rise by 1 degree celsius on the absorption of 4.634 × 10³ joules of energy. 1.405 \times 10^{4} \; \text{J} are available from the reaction. Thus, the temperature of the system shall have risen by 3.03 degrees celsius to 24.6 degrees celsius by the end of the reaction.

4 0
3 years ago
Consider the following reaction 2 N2O(g) =&gt; 2 N2(g) + O2(g) rate = k[N2O]. For an initial concentration of N2O of 0.50 M, cal
den301095 [7]

Answer:

After 2.0 minutes the concentration of N2O is 0.3325 M

Explanation:

Step 1: Data given

rate = k[N2O]

initial concentration of N2O of 0.50 M

k = 3.4 * 10^-3/s

Step 2: The balanced equation

2N2O(g) → 2 N2(g) + O2(g)  

Step 3: Calculate the concentration of N2O after 2.0 minutes

We use the rate law to derive a time dependent equation.

-d[N2O]/dt = k[N2O]

ln[N2O] = -kt + ln[N2O]i

 ⇒ with k = 3.4 *10^-3 /s

⇒ with t = 2.0 minutes = 120s

⇒ with [N2O]i = initial conc of N2O = 0.50 M

ln[N2O] = -(3.4*10^-3/s)*(120s) + ln(0.5)

ln[N2O] = -1.101

e^(ln[N2O]) = e^(-1.1011)

[N2O} = 0.3325 M

After 2.0 minutes the concentration of N2O is 0.3325 M

3 0
3 years ago
What is an example of chemical change
Helga [31]
 metal rusting in salt water
4 0
3 years ago
Read 2 more answers
A mixture in which different materials can be easily distinguished.
Juli2301 [7.4K]

Answer:

heterogeneous mixture.

Explanation:

took k12 test

8 0
2 years ago
Nitrogen gas (N2) and hydrogen gas (H2) combine to form ammonia (NH3). Which equation correctly represents this reaction? A. N +
satela [25.4K]

The equation that correctly represent the reaction for formation of ammonia is

N2+ 3H2 → 2NH3 (answer D)

1 mole of nitrogen gas (N2) react with 3 moles of hydrogen gas (H2) to form 2 moles of ammonia ( NH3). This is in a process known as haber process were iron is used as a catalyst and reaction take place that a higher temperature and pressure. The process is exothermic hence energy is released.

4 0
3 years ago
Read 4 more answers
Other questions:
  • Which is the first step to take to help reduce pollution
    12·1 answer
  • Crystallization from cooling magma describes one way that
    8·1 answer
  • 100 POINTS ANSWER HURRRY
    12·2 answers
  • Which alternative energy source would be expected to be the least dependent upon the weather?
    13·1 answer
  • Where are the electrons found in Bohrs atomic atom
    9·1 answer
  • BRAILY I NEED HELP ASAPP
    7·1 answer
  • An independent variable is....
    9·1 answer
  • Which is longer, the carbon-oxygen single bond in a carboxylic acid or the carbon-oxygen bond in an alcohol?
    6·1 answer
  • Inventos de la física que estén entre los 800 años y 1500<br> Ocupó 15 porfa
    11·1 answer
  • QUESTION 14
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!