Answer: Acceleration will have 2 components, vertical and horizontal.
Net-vertical component can be positive, zero or negative depending upon the magnitude of the upward component of the applied acceleration.
Net-horizontal acceleration will be equal to the horizontal component of the applied acceleration.
Explanation:
Since acceleration is a vector quantity and the cart is being pushed up the ramp, the ramp would be at some angle to the horizontal and hence there will be vertical and horizontal components of acceleration.
<u>For vertical acceleration:</u>
If the magnitude of the upward component of the applied acceleration is greater than the value of the acceleration due to gravity then the net vertical acceleration will be upward because it will overtake the value of acceleration due to gravity.
In case the upward component of the applied acceleration is lesser than the value of the acceleration due to gravity then the net vertical acceleration will be downward.
<u>For horizontal acceleration:</u>
This component remains unaffected and is equal to the horizontal component of the applied acceleration because there is no other acceleration acting in the horizontal direction.
But the net acceleration will not be solely in the vertical or horizontal direction because the block has to move forward on the inclined ramp so there will always exist a horizontal and a vertical component making the net acceleration to parallel to the ramp in upward direction if the body is going up the ramp.
Well, it would be fossilization. <- If I spelled it correctly.
Answer:
unmmmmmmmm I think the answerA
<h2>Answer: about the same size of the gap or slit</h2>
Diffraction happens when a wave (mechanical or electromagnetic wave, in fact, any wave) meets an obstacle or a slit .When this occurs, the wave bends around the corners of the obstacle or passes through the opening of the slit that acts as an obstacle, forming multiple patterns with the shape of the aperture of the slit.
Note that the principal condition for the occurrence of this phenomena is that the obstacle must be comparable in size (similar size) to the size of the wavelength.
In other words, when the gap (or slit) size is larger than the wavelength, the wave passes through the gap and does not spread out much on the other side, but when the gap size is equal to the wavelength, maximum diffraction occurs.
Therefore:
<h2>Waves diffract the most when their wavelength is <u>about the same size of the gap
</u></h2>
<u />
Answer:
"The lowest energy configuration for an atom is the one having the maximum number of unpaired electrons allowed by thePauli principle in a particular set of degenerate orbitals" is known as Hund's rule.
Explanation:
Pauli's Exclusion principle states that "two or more electrons can not have the same values of the set of all quantum numbers in an atom or a molecule".
So, the given statement <em>is not</em> Pauli's Exclusion principle.
Hund's rule states that the lowest energy configuration of an atom is that one in which the maximum number of parallel spins of the electrons are present.
The given statement is "The lowest energy configuration for an atom is the one having the maximum number of unpaired electrons allowed by the Pauli principle in a particular set of degenerate orbitals", which is same as the Hund's rule.
Thus, the given statement is Hund' rule.
Heisenberg's uncertainty principle states that the momentum and position of an object can not be measured exactly at the same time.
So, the given statement <em>is not</em> Heisenberg's uncertainty principle.
Aufbau principle tells about the filling of the electrons in subshells of an atom. Therefore, the given statement <em>is not </em>Aufbau principle.