Answer:
- What is the AGⓇ of this reaction? 0.
- Which will be favoured - the forward reaction, the reverse reaction, or neither? Neither.
- What effect does the presence of the enzyme aspartate transaminase have on the Key value when compared with its value in the absence of enzyme? It does not affect the value of Keq.
- If one of the products of reaction 1, oxaloacetate, is removed by converting it to citrate as follows: Reaction 2: oxaloacetate + acetyl-CoA citrate + COASH will the key for Reaction l be changed? No, the Keq does not change.
Explanation:
1. To calculate the delta G of a reaction given the K, we use the following equation:
ΔG°= -RT ln K.
Which gives us 0 when K is 1.
2.None of the reactions is favoured. Given that the K equals 1, the system will try to keep the concentration of both products and reagents the same.
3. A catalyst is a substance that, when added, provides a different and faster mechanism through which a reaction takes place. This only means that the speed at which the equilibrium is attained is reduced, but the enzyme does nothing to alter the difference in energy (ΔG°) of the start and end points of the reaction, which ultimately gives us the value of Keq.
4. The addition of a side reaction does not change the value of Keq for the main reaction. They are both separate ways of making oxaloacetate disappear. While the Keq does not change, keep in mind that the end concentrations will not be the same, for any set of starting concentrations of your substances.
I dont know but do you know da wae brudda?
The correct answer is 1atm.
<h3>
What is Kinetic theory of gases?</h3>
A lot of the fundamental ideas of thermodynamics were established with the help of the kinetic theory of gases, a straightforward yet historically significant classical model of the thermodynamic behaviour of gases. According to the model, a gas is made up of numerous identical submicroscopic particles (atoms or molecules) that are all moving rapidly and randomly. It is considered that they are substantially smaller in size than the particle spacing on average. Random elastic collisions between the particles and with the container's walls occur between the particles. The simplest form of the model only takes into account the interactions within the ideal gas.
learn more about Kinetic theory of gases refer:
brainly.com/question/3924326
#SPJ4
Answer: Partial pressure of
at a depth of 132 ft below sea level is 2964 mm Hg.
Explanation:
It is known that 1 atm = 760 mm Hg.
Also, 
where,
= partial pressure of 
P = atmospheric pressure
= mole fraction of 
Putting the given values into the above formula as follows.


= 0.780
Now, at a depth of 132 ft below the surface of the water where pressure is 5.0 atm. So, partial pressure of
is as follows.

= 
= 2964 mm Hg
Therefore, we can conclude that partial pressure of
at a depth of 132 ft below sea level is 2964 mm Hg.