Take mass of zinc divided by the relative molecular mass - 30 for zinc ( from periodic table)
core electrons are those occupying the innermost or lowest energy levels
Answer:
Weak bonds require less energy to form than strong bonds
Explanation:
According to Coulomb's law, the force between two species is inversely proportional to the distance between them. That said, the bigger the atoms are, the greater the bond length should be to form a molecule.
As a result, for a greater bond length, the attraction force is lower than for a shorter bond length. This implies that large atoms would form weak bonds and small atoms would form strong bonds.
Bond energy is defined as the amount of energy required to break the bond. If a bond is weak, it would require a low amount of energy to break it. This is also true for energy of formation, as it's the same process taking place in the opposite direction.
The mole fraction of a product is the number of moles of the product divided by the total number of moles of the solution.
Here moles of methanol = 6.0 moles
Moles of solution = 6.0 moles of methanol + 3.0 moles of water = 9.0 moles of solution
Mole fraction of methanol = 6.0 / 9.0 = 0.67
Answer: 0.67
Answer:
When liquid water is cooled, it contracts until a temperature of approximately 4 degrees Celsius is reached. After that, it expands slightly until it reaches the freezing point, and then when it freezes it expands by approximately 9%. When water freezes, water molecules form a crystalline structure maintained by hydrogen bonding. Ice is less dense than water because the orientation of hydrogen bonds causes molecules to push farther apart, which lowers the density.