The answer is 33.33 %
The explanation:
According to the reaction equation:
MgCO3(s) + 2HCl (aq) --> MgCl2(aq) + H20(l) + CO2(g)
we can see that 1 mole of MCO3 will produce → 1 mole of CO2
-Now we need o get number of mole of CO2:
and when we have 0.22 g of CO2, so number of mole = mass / molar mass
moles = 0.22 g / 44 g/mol = 0.005 mole
∴ moles of Mg = moles of CO2 = 0.005 mole
∴ mass of Mg = moles * molar mass
= 0.005 * 84 /mol = 0.42 g
∴ Percent of MgCO3 by mass of Mg = 0.42 g / 1.26 * 100
= 33.33 %
For the titration we use the equation,
M₁V₁ = M₂V₂
where M is molarity and V is volume. Substituting the known values,
(0.15 M)(43.2 mL) = (2)(M₂)(20.5 mL)
We multiply the right term by 2 because of the number of H+ in H2SO4. Calculating for M₂ will give us 0.158 M. Thus, the answer is approximately 0.16M.
Answer:
The specific heat of water is 4.18 J/g C.
Explanation:
q
=
m
C
s
Δ
T
Never forget that!
2200
=
m
⋅
4.18
J
g
⋅
°
C
⋅
66
°
C
∴
m
≈
8.0
g
<span>Photoelectric effect refer to the emission of electron or free carriers when light shine into a material. According to the Rutherford model, light of any energy should be able to make electrons leave the atom and be emitted.
The energy of the emitted electrons should be related to the intensity of the light. But the energy of the electron is actually only related to the energy of the light</span>
1234567891011121314151617181920