Тнe Anѕwer
-It was Ernest Rutherford
Answer:
The acceleration of the electron is 1.457 x 10¹⁵ m/s².
Explanation:
Given;
initial velocity of the emitted electron, u = 1.5 x 10⁵ m/s
distance traveled by the electron, d = 0.01 m
final velocity of the electron, v = 5.4 x 10⁶ m/s
The acceleration of the electron is calculated as;
v² = u² + 2ad
(5.4 x 10⁶)² = (1.5 x 10⁵)² + (2 x 0.01)a
(2 x 0.01)a = (5.4 x 10⁶)² - (1.5 x 10⁵)²
(2 x 0.01)a = 2.91375 x 10¹³

Therefore, the acceleration of the electron is 1.457 x 10¹⁵ m/s².
Answer:
Frequency, 
Explanation:
Given that,
Wavelength of the light,

We need to find the frequency of light. We know that light is an electromagnetic wave. It moves with the speed of light. So,

f is the frequency of light

So, the frequency of light is
. Hence, this is the required solution.
Answer:
The dolphin's speed is 17 mi/h
Explanation:
Use the formula for average velocity: Distance/time
then the average speed of the dolphin is 51/3 mi/h = 17 mi/h
Answer:
a) F = 1.26 10⁵ N, b) F = 2.255 10³ N, c) F_ {soil} = 3078 N
Explanation:
For this exercise we will use the relationship between momentum and moment
I = Δp
F t = p_f -p₀
a) with stiff legs, final speed is zero, initial velocity is down
Ft = 0-p₀
F = m v / t
let's calculate
F = 84.0 6.82 / 4.56 10⁻³
F = 1.26 10⁵ N
b) bending the legs
let's calculate
F = 84.0 6.82 / 0.254
F = 2.255 10³ N
c) It is requested to calculate the force of the ground on the man
∑ F = F_soil -W
F_soil = F + W
F_ {soil} = 2.255 103 + 84 9.8
F_ {soil} = 3078 N