Answer:

Explanation:
Given that,
Initially, the spaceship was at rest, u = 0
Final velocity of the spaceship, v = 11 m/s
Distance accelerated by the spaceship, d = 213 m
We need to find the acceleration experienced by the occupants of the spaceship during the launch. It is a concept based on the equation of kinematics. Using the third equation of motion to find acceleration.

So, the acceleration experienced by the occupants of the spaceship is
.
Answer:
Work done is 882000joule.
power is 29400watt.
Explanation:
given,
Mass(m)=500kg
Acceleration due to gravity(g)=9.8m/s²
Height(h)=6m
Time taken(t)=30s
Workdone=?
Power=?
now,
workdone=force*displaxement
= m*g*h
=500*9.8*6
=8,82,000joule
so, the work done by the man is 8,82,000joule.
then,
power=workdone/time taken
=8,82,000/30
=29,400watt
so, the required power to lift a load is 29,400watt.
If the coefficient alpha for a stress scale was computed to be 0.80, the scale would be strongly reliable. A coefficient alpha that is at least 0.70 and above is considered to have a strong internal consistency, which means the items in the scale are closely related as a group.