Answer:
The first is the electric field, which describes the force acting on a stationary charge and gives the component of the force that is independent of motion. The magnetic field, in contrast, describes the component of the force that is proportional to both the speed and direction of charged particles.
I do not understand the full question, however if you are wondering which way Simone and the dog will go, they will go right because the force of 34 N from the dog is higher than the force of 16 N from Simone.
Answer:
V = 3.5 x 10⁻⁶ m³/s = 3.5 cm³/s
Explanation:
The volume flow rate of the blood in the artery can be given by the following formula:

where,
V = Volume flow rate = ?
A = cross-sectional area of artery = πd²/4 = π(0.004 m)²/4 = 1.26 x 10⁻⁵ m²
v = velcoity = 0.28 m/s
Therefore,

<u>V = 3.5 x 10⁻⁶ m³/s = 3.5 cm³/s</u>
Answer: 0.798 m
Explanation:
Given
Mass of the spring oscillator, m = 1.48 kg
Force constant of the spring, k = 35.4 N/m
Speed of oscillation, v = 3.9 m/s
Kinetic Energy = 1/2 mv²
Kinetic Energy = 1/2 * 1.48 * 3.9²
KE = 0.5 * 22.5108
KE = 11.26 J
Using the law of conservation of Energy. The Potential Energy of the system is equal to Kinetic Energy of the system
KE = PE
PE = 1/2kx²
11.26 = 1/2 * 35.4 * x²
11.26 = 17.7x²
x² = 11.26 / 17.7
x² = 0.6362
x = √0.6362
x = 0.798 m