Hey there,
The answer is Group 1 elements.
Hope this helps :))
~Top
If you follow the octet rule, you know that an element must have 8 outside (or valence) electrons to be energetically favorable.
In CCl4, the carbon molecule forms four bonds; one for each chlorine atom. Each bond contains 2 electrons, so it is satisfied.
In PCl3, Phosphorous forms only 3 bonds with chlorine, which means in order to have 8 valence electrons, it also has a lone pair of electrons, not bonded with chlorine.
Now, in CCl4, picture the shape of the molecule like a plus sign, with the carbon in the middle and the chlorine at the four ends. It is symmetrical, and therefore is nonpolar.
In PCl3, the lone pair electrons <em>push</em>, so to speak, the 3 chlorine atoms away, making a T-shaped molecule. Since the chlorine is more electronegative than carbon, the molecule is unbalenced, making it polar.
Answer: b. False
K+ ions move faster than the Na+ ions through the neuron membranes.
The concentration of Sodium ions outside the cell is very high. The concentration of Potassium ions inside the cells is very high. Leakage channels thus allow sodium ions to move inside the cells and pumps out the Potassium from the cells.
Answer:

Explanation:
Considering,
Using ideal gas equation as:
where,
P is the pressure = 760 mmHg
V is the volume = 100.0 mL = 0.1 L
m is the mass of the gas = 0.193 g
M is the molar mass of the gas = ?
Temperature = 17 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T = (17 + 273.15) K = 290.15 K
R is Gas constant having value = 62.36367 L. mmHg/K. mol
Applying the values as:-
M = 45.95 g/mol
This mass corresponds to
. Hence, the gas must be
.
Hey there!
To calculate the percent by mass of the Ca(NO₃)₂ we need to find the total mass first by adding.
896.92 + 22.63 = 919.55
In total, the solution is 919.55 grams.
To find the percent of Ca(NO₃)₂ in the solution, divide the mass of Ca(NO₃)₂ by the total mass and multiply by 100.
22.63 ÷ 919.55 = 0.0246
0.0246 x 100 = 2.46
Ca(NO₃)₂ makes up 2.46% of the solution.
Hope this helps!