Answer:
Explanation:
Given
speed of Electron 
final speed of Electron 
distance traveled 
using equation of motion

where v=Final velocity
u=initial velocity
a=acceleration
s=displacement


acceleration is given by 
where q=charge of electron
m=mass of electron
E=electric Field strength

The height of the ball above the ground is 38.45 m
First we will calculate the velocity of the ball when it touch the ground by using first equation of motion
v=u+gt
v=0+9.81×2.8
v=27.468 m/s
now the height of the ground can be calculated by the formula
v=√2gh
27.468=√2×9.81×h
h=38.45 m
D is the correct answer, assuming that this is the special case of classical kinematics at constant acceleration. You can use the equation V = Vo + at, where Vo is the initial velocity, V is the final velocity, and t is the time elapsed. In D, all three of these values are given, so you simply solve for a, the acceleration.
A and C are clearly incorrect, as mass and force (in terms of projectile motion) have no effect on an object's motion. B is incorrect because it is not useful to know the position or distance traveled, unless it will help you find displacement. Even then, you would not have enough information to use a kinematics equation to find a.
Answer:
The nature of volcanic eruptions is highly dependent on magma viscosity and also on dissolved gas content. ... long it takes the treacle to flow from one end of a boiling tube to the other.
Yes. It r<span>efers to any of the temperatures assigned to a number of reproducible equilibrium states on the International Practical Temperature Scale</span><span>
In short, Your Answer would be "True"
Hope this helps!</span>