1st <span>the total </span>energy<span> of an </span>isolated system<span> is constant; energy can be transformed from one form to another, but can be neither created nor destroyed. ▲U=Q-W
</span><span>
2nd the total </span>entropy<span> can never decrease over time for an </span>isolated system, that is, a system in which neither energy nor matter can enter nor leave.
DS (Greater than or equal to) 0
<u>Answer;</u>
<em>D. The object’s weight changes, but its mass stays the same.</em>
<u>Explanation;</u>
- Mass is the amount of matter in a object, which is measured in kilograms. Mass of an object is measured using a beam balance. It is important to note that the mass of an object or a body remains constant, and does not vary from one place to another. For instance the mass of a person on the moon will be the same as when the person is on the earth surface.
- Weight on the other hand is the measurement of gravitational pull of an object. weight is measured using a spring balance and measured in Newtons. Weight varies from one place to another depending on the gravitational pull of a given surface.
The position of the centre of gravity of an object affects its stability. The lower the centre of gravity (G) is, the more stable the object. The higher it is the more likely the object is to topple over if it is pushed. Racing cars have really low centres of gravity so that they can corner rapidly without turning over.
Increasing the area of the base will also increase the stability of an object, the bigger the area the more stable the object. Rugby players will stand with their feet well apart if they are standing and expect to be tackled.
Answer:
In most materials, as heat energy is absorbed, the density decreases. IF a certain object is heated, it might appear bigger than usual because it expands as the molecules inside moves faster than usual. However the mass of it stays the same while the density decreases.