<span>The melting and freezing points of a substance are the same.
Substances melt and freeze at the same temperature. Hope this helps! :)</span>
The mass percent composition of aluminum is 52.9% in aluminum oxide.
Mass of the aluminum = 3.53 g
Mass of the aluminum oxide = 6.67 g.
The mass percent of a substance is the mass of the substance divided by the mass of the compound into 100.
Aluminum reacts with oxygen to form aluminum oxide.
The overall balanced equation for the reaction is,


The mass percent composition of aluminum in the aluminum oxide is,



= 52.9 %
Therefore, the mass percent composition of aluminum is 52.9% in aluminum oxide.
To know more about aluminum oxide, refer to the below link:
brainly.com/question/25869623
#SPJ4
<h2>Let us find the efficiency : Ans = 0.6</h2>
Explanation:
we know :
efficiency = output/input
We also know that :
output = m x g x h
where :
m = mass of body
g = acceleration due to gravity
h = height of body from floor
Thus, output = 0.6 x 10 x 1.2 = 7.2J
Similarly ,input = 0.6 x 10 x 2 = 12J
Thus efficiency = 7.2/12 = 0.6
Answer:
Explanation:
Polarization In this case angle of incidence is not equal to angle of polarization, hence reflected light is partially polarized and transmitted light is also partially polarized. by reflection is explained by Brewster's law,
According to this when unpolarized light incident on glass plate at an angle is called as angle of polarizing the reflected light is plane polarized, and transmitted light is partially polarized. The plane of vibration of polarized light is having plane of vibrations perpendicular to plane of incidence.
Intermolecular forces are forces that keep molecules together. For example, the forces between two water molecules. The stronger the intermolecular forces are, the more "solid" is the matter going to be, meaning that the intermolecular forces are the strongest in solids and weakest in gases.
Make sure not to confuse intERmolecular forces (forces between *molecules*) and intRAmolecular forces (forces between *atoms* that make up a molecule).