1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zielflug [23.3K]
3 years ago
11

A ball is dropped off the balcony of a hotel room and it takes 2.8s to fall to the ground . how high above the ground is the bal

l
Physics
1 answer:
RideAnS [48]3 years ago
5 0

The height of the ball above the ground is 38.45 m

First we will calculate the velocity of the ball when it touch the ground by using first equation of motion

v=u+gt

v=0+9.81×2.8

v=27.468 m/s

now the height of the ground can be calculated by the formula

v=√2gh

27.468=√2×9.81×h

h=38.45 m

You might be interested in
Two ice skaters, Lilly and John, face each other while at rest, and then push against each other's hands. The mass of John is tw
seropon [69]

Answer:

Lilly's speed is two times John's speed.

Explanation:

m = Mass

a = Acceleration

t = Time taken

u = Initial velocity

v = Final velocity

The force they apply on each other will be equal

F=ma\\\Rightarrow a_l=\frac{F}{m_l}

F=ma\\\Rightarrow a_j=\frac{F}{2m_l}\\\Rightarrow a_j=\frac{1}{2}a_l

v=u+at\\\Rightarrow v_l=0+\frac{F}{m_l}\times t\\\Rightarrow v_l=a_lt

v=u+at\\\Rightarrow v_l=0+\frac{F}{2m_l}\times t\\\Rightarrow v_j=\frac{1}{2}a_lt\\\Rightarrow v_j=\frac{1}{2}v_l\\\Rightarrow v_l=2v_j

Hence, Lilly's speed is two times John's speed.

4 0
3 years ago
If the mass of a material is 47 grams and the volume of the material is 15 cm^3, what would the density of the material be?
uranmaximum [27]
Density is calculated as mass per unit volume. In this case, since the material has a mass of 47 grams and we have the volume of 15 cm^3, we can simply divide the values:
Density = 47 grams / 15 cm^3 = 3.1 g/cm^3
Therefore, the material has a density of 3.1 g/cm^3
8 0
3 years ago
1. What affects a material's resistance?
Ghella [55]

Answer:

A. Thickness and temperature

Explanation:

3 0
3 years ago
Which wavelengths does nitrogen catch ?
Ann [662]

Answer:

The strongest lines are at 337.1 nm wavelength in the ultraviolet. Other lines have been reported at 357.6 nm, also ultraviolet. This information refers to the second positive system of molecular nitrogen, which is by far the most common.

Explanation:

5 0
4 years ago
How do you calculate the net force, i need a full explanation PLEASE
Lina20 [59]

Answer:

Once you have drawn the free-body diagram, you can use vector addition to find the net force acting on the object. We will consider three cases as we explore this idea:

Case 1: All forces lie on the same line.

If all of the forces lie on the same line (pointing left and right only, or up and down only, for example), determining the net force is as straightforward as adding the magnitudes of the forces in the positive direction, and subtracting off the magnitudes of the forces in the negative direction. (If two forces are equal and opposite, as is the case with the book resting on the table, the net force = 0)

Example: Consider a 1-kg ball falling due to gravity, experiencing an air resistance force of 5 N. There is a downward force on it due to gravity of 1 kg × 9.8 m/s2 = 9.8 N, and an upward force of 5 N. If we use the convention that up is positive, then the net force is 5 N - 9.8 N = -4.8 N, indicating a net force of 4.8 N in the downward direction.

Case 2: All forces lie on perpendicular axes and add to 0 along one axis.

In this case, due to forces adding to 0 in one direction, we only need to focus on the perpendicular direction when determining the net force. (Though knowledge that the forces in the first direction add to 0 can sometimes give us information about the forces in the perpendicular direction, such as when determining frictional forces in terms of the normal force magnitude.)

Example: A 0.25-kg toy car is pushed across the floor with a 3-N force acting to the right. A 2-N force of friction acts to oppose this motion. Note that gravity also acts downward on this car with a force of 0.25 kg × 9.8 m/s2= 2.45 N, and a normal force acts upward, also with 2.45 N. (How do we know this? Because there is no change in motion in the vertical direction as the car is pushed across the floor, hence the net force in the vertical direction must be 0.) This makes everything simplify to the one-dimensional case because the only forces that don’t cancel out are all along one direction. The net force on the car is then 3 N - 2 N = 1 N to the right.

Case 3: All forces are not confined to a line and do not lie on perpendicular axes.

If we know what direction the acceleration will be in, we will choose a coordinate system where that direction lies on the positive x-axis or the positive y-axis. From there, we break each force vector into x- and y-components. Since motion in one direction is constant, the sum of the forces in that direction must be 0. The forces in the other direction are then the only contributors to the net force and this case has reduced to Case 2.

If we do not know what direction the acceleration will be in, we can choose any Cartesian coordinate system, though it is usually most convenient to choose one in which one or more of the forces lie on an axis. Break each force vector into x- and y-components. Determine the net force in the x direction and the net force in the y direction separately. The result gives the x- and y-coordinates of the net force.

Example: A 0.25-kg car rolls without friction down a 30-degree incline due to gravity.

We will use a coordinate system aligned with the ramp as shown. The free-body diagram consists of gravity acting straight down and the normal force acting perpendicular to the surface.

We must break the gravitational force in to x- and y-components, which gives:

F_{gx} = F_g\sin(\theta)\\ F_{gy} = F_g\cos(\theta)F

gx

​

=F

g

​

sin(θ)

F

gy

​

=F

g

​

cos(θ)

Since motion in the y direction is constant, we know that the net force in the y direction must be 0:

F_N - F_{gy} = 0F

N

​

−F

gy

​

=0

(Note: This equation allows us to determine the magnitude of the normal force.)

In the x direction, the only force is Fgx, hence:

F_{net} = F_{gx} = F_g\sin(\theta) = mg\sin(\theta) = 0.25\times9.8\times\sin(30) = 1.23 \text{ N}F

net

​

=F

gx

​

=F

g

​

sin(θ)=mgsin(θ)=0.25×9.8×sin(30)=1.23 N

7 0
4 years ago
Other questions:
  • An ice boat is coasting along a frozen lake. Friction between the ice and the boat is negligible, and so is air resistance. Noth
    11·1 answer
  • Similarities and differences between high pitch and low pitch
    12·1 answer
  • Technician A says that pressure below atmospheric pressure is called vacuum and is measured in inches of mercury​ (Hg). Technici
    10·2 answers
  • Electromagnetic force is present when electromagnetic fields
    6·2 answers
  • To measure specific heat, the student flows air with a velocity of 20 m/s and a temperature of 25C perpendicular to the length
    14·1 answer
  • You need to design a 60.0-Hz ac generator that has a maximum emf of 5200 V. The generator is to contain a 130-turn coil that has
    10·1 answer
  • A modified Atwood machine is at rest. The hanging block has a mass of 3kg. The black on wheels has unknown mass M1. When release
    11·1 answer
  • Sarah's mother gets a flat tire on her car while driving Sarah to school. They use a jack to change the tire. It exerts a force
    14·1 answer
  • I'd like you to think back on 2 events in
    6·1 answer
  • The next closest star to Earth, Proxima Centuri, is 4.25 lightyears away. How far is that in meters?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!