concave <span>ray diagrams were constructed in order to determine the general location, size, orientation, and type of image formed by concave mirrors. Perhaps you noticed that there is a definite relationship between the image characteristics and the location where an object placed in front of a concave mirror. but, convex</span><span>ray diagrams were constructed in order to determine the location, size, orientation, and type of image formed by concave mirrors. The ray diagram constructed earlier for a convex mirror revealed that the image of the object was virtual, upright, reduced in size and located behind the mirror. </span>
Answer:
Part a)

Part b)

So this speed is independent of the mass of the rider
Explanation:
Part a)
By force equation on the rider at the position of the hump we can say

now we will have


now we have



Part b)
At the top of the loop if the minimum speed is required so that it remains in contact so we will have

at minimum speed




So this speed is independent of the mass of the rider
For vertical motion, use the following kinematics equation:
H(t) = X + Vt + 0.5At²
H(t) is the height of the ball at any point in time t for t ≥ 0s
X is the initial height
V is the initial vertical velocity
A is the constant vertical acceleration
Given values:
X = 1.4m
V = 0m/s (starting from free fall)
A = -9.81m/s² (downward acceleration due to gravity near the earth's surface)
Plug in these values to get H(t):
H(t) = 1.4 + 0t - 4.905t²
H(t) = 1.4 - 4.905t²
We want to calculate when the ball hits the ground, i.e. find a time t when H(t) = 0m, so let us substitute H(t) = 0 into the equation and solve for t:
1.4 - 4.905t² = 0
4.905t² = 1.4
t² = 0.2854
t = ±0.5342s
Reject t = -0.5342s because this doesn't make sense within the context of the problem (we only let t ≥ 0s for the ball's motion H(t))
t = 0.53s