1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Veseljchak [2.6K]
3 years ago
14

Four copper wires of equal length are connected in series. Their cross-sectional areas are 0.7 cm2 , 2.5 cm2 , 2.2 cm2 , and 3 c

m2 . If a voltage of 145 V is applied to the arrangement, determine the voltage across the 2.5 cm2 wire.
Physics
1 answer:
Travka [436]3 years ago
6 0

Answer:

22.1 V

Explanation:

We are given that

A_1=0.7 cm^2=0.7\times 10^{-4} m^2

A_2=2.5 cm^2=2.5\times 10^{-4} m^2

A_3=2.2 cm^2=2.2\times 10^{-4} m^2

A_4=3 cm^2=3\times 10^{-4} m^2

Using 1cm^2=10^{-4} m^2

We know that

R=\frac{\rho l}{A}

In series

R=R_1+R_2+R_3+R_4

R=\frac{\rho l}{A_1}+\frac{\rho l}{A_2}+\frac{\rho l}{A_3}+\frac{\rho l}{A_4}

R=\frac{\rho l}{\frac{1}{A_1}+\frac{1}{A_2}+\frac{1}{A_3}+\frac{1}{A_4}}

Substitute the values

R=\rho A(\frac{1}{0.7\times 10^{-4}}+\frac{1}{2.5\times 10^{-4}}+\frac{1}{2.2\times 10^{-4}}+\frac{1}{3\times 10^{-4}})

R=\rho l(2.62\times 10^4)

V=145 V

I=\frac{V}{R}=\frac{145}{\rho l(2.62\times 10^4)}

Voltage across the 2.5 square cm wire=IR=I\times \frac{\rho l}{A_2}

Voltage across the 2.5 square cm wire=\frac{145}{\rho l(2.62\times 10^4)}\times \frac{\rho l}{2.5\times 10^{-4}}=22.1 V

Voltage across the 2.5 square cm wire=22.1 V

You might be interested in
31. Draw a free body diagram for a 15.5N box that is being pushed to the right with a 18. N force while experiencing 4.30 N of r
posledela

Answer:

See answers below

Explanation:

a.

F = mg,

15.5 N = m(9.8 m/s²)

m = 1.58 kg

b.

Fnet = Applied force - resistance,

Fnet = 18 N - 4.30 N,

Fnet = 13.70 N

Fnet = ma

13.70 N = (1.58 kg)a

a = 8.67 m/s²

For the free body diagram, draw a box with an upward arrow labeled 15.5 N, a downward label labeled 15.5 N, a right label labeled 18 N, and a left label labeled 4.30 N.

7 0
3 years ago
A particle of mass 4.00 kg is attached to a spring with a force constant of 100 N/m. It is oscillating on a frictionless, horizo
zloy xaker [14]

Solution :

Given :

Mass attached to the spring = 4 kg

Mass dropped = 6 kg

Force constant = 100 N/m

Initial amplitude = 2 m

Therefore,

a). $v_{initial} = A w$

          $= 2 \times \sqrt{\frac{100}{4}}$

          = 10 m/s

Final velocity, v at equilibrium position, v = 5 m/s

Now, $\frac{1}{2}(4+4)5^2 = \frac{1}{2} kA'$

A' = amplitude = 1.4142 m

b). $T=2 \pi \sqrt{\frac{m}{k}}$

    m' = 2m

    Hence, $T'=\sqrt2 T$

c). $\frac{\frac{1}{2}(4+4)5^2 + \frac{1}{2}\times 4 \times 10^2}{\frac{1}{2} \times 4 \times 10^2}$

  $=\frac{1}{2}$

Therefore, factor $=\frac{1}{2}$

Thus, the energy will change half times as the result of the collision.

7 0
3 years ago
A load of 1 kW takes a current of 5 A from a 230 V supply. Calculate the power factor.
Pachacha [2.7K]

Answer:

Power factor = 0.87 (Approx)

Explanation:

Given:

Load = 1 Kw = 1000 watt

Current (I) = 5 A

Supply (V) = 230 V

Find:

Power factor.

Computation:

Power factor = watts / (V)(I)

Power factor = 1,000 / (230)(5)

Power factor = 1,000 / (1,150)

Power factor = 0.8695

Power factor = 0.87 (Approx)

6 0
4 years ago
Based on observations, the speed of a jogger can be approximated by the relation v 5 7.5(1 2 0.04x) 0.3, where v and x are expre
castortr0y [4]

Answer:

solution:

to find the speed of a jogger use the following relation:  

V

=

d

x

/d

t

=

7.5

×m

i

/

h

r

...........................(

1

)  

in Above equation in x and t. Separating the variables and integrating,

∫

d

x

/7.5

×=

∫

d

t

+

C

or

−

4.7619  

=

t

+

C

Here C =constant of integration.   

x

=

0  at  t

=

0

, we get:  C

=

−

4.7619

now we have the relation to find the position and time for the jogger as:

−

4.7619  =

t

−

4.7619

.

.

.

.

.

.

.

.

.

(

2

)

Here

x  is measured in miles and  t  in hours.

(a) To find the distance the jogger has run in 1 hr, we set t=1 in equation (2),    

     to get:

      = −

4.7619  

      =  

1

−

4.7619

      = −

3.7619

  or  x

=

7.15

m

i

l

e

s

(b) To find the jogger's acceleration in   m

i

l

/

differentiate  

     equation (1) with respect to time.

     we have to eliminate x from the equation (1) using equation (2).  

     Eliminating x we get:

     v

=

7.5×

     Now differentiating above equation w.r.t time we get:

      a

=

d

v/

d

t

       =

−

0.675

/

      At  

      t

=

0

      the joggers acceleration is :

       a

=

−

0.675

m

i

l

/

        =

−

4.34

×

f

t

/  

(c)  required time for the jogger to run 6 miles is obtained by setting  

        x

=

6  in equation (2).  We get:

        −

4.7619

(

1

−

(

0.04

×

6  )

)^

7

/

10=

t

−

4.7619

         or

         t

=

0.832

h

r

s

6 0
3 years ago
If you used 16 gallons when driving 367 miles, what was your gas mileage over that distance
White raven [17]
Your gas mileage would be 22.93 miles per gallon.
6 0
3 years ago
Other questions:
  • 40 POINTS CORRECT ANSWER
    13·1 answer
  • A steel bridge is 1000 m long at -20°C in winter. What is the change in length when the temperature rises to 40°C in summer? The
    13·1 answer
  • How can you use your personal choices to exercise more safely
    5·1 answer
  • Constructive and destructive interference of vibrational waves on an aircraft can create a range of effects from a slight tail f
    14·1 answer
  • I can fly but have no wings. I can cry but I have no eyes. Wherever I go, darkness follows me. What am I?
    12·2 answers
  • प्रकाशको आवर्तनको परिभाषा लेख्नुहोस् । कन्भेक्स ऐनाको अगाडि तपाई उभियौ भने तपाईको कस्तो आकृति बन्छ, लेख्नर
    9·1 answer
  • You pull a 70-kg crate at an angle of 30° above the horizontal. If you pull with a force of 600N and the coefficient of kinetic
    13·1 answer
  • What is electrical power and how is it measured?
    11·1 answer
  • If there were no external forces acting on the two pucks, their complex motion could be described as the combination of the unif
    15·1 answer
  • If a maserati. with a belocity of 6 m/s E, accelerates at a rate of 85 m/s^2 for 5 seconds, what will its velocity be?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!