2 is your answer hope you get it right
The balanced equation for the above reaction is
2Al + 3CuCl₂ --> 2AlCl₃ + 3Cu
stoichiometry of Al to CuCl₂ is 2:3
limiting reactant is when the reactant is fully consumed in the reaction therefore amount of product formed depends on amount of limiting reactant present.
number of Al moles - 0.5 g / 27 g/mol = 0.019 mol
number of CuCl₂ moles - 3.5 g / 134.5 g/mol = 0.026 mol
if Al is the limiting reactant
if 2 mol of Al reacts with 3 mol of CuCl₂
then 0.019 mol of Al reacts with - 3/2 x 0.019 = 0.029 mol of CuCl₂
but only 0.026 mol of CuCl₂ is present
therefore CuCl₂ is the limiting reactant
and 0.026 mol of CuCl₂ reacts with - 0.026/3 x 2 = 0.017 mol of Al is required
but 0.019 mol of Al is present
therefore CuCl₂ is the limiting reactant and Al is in excess
Answer:
1
Explanation:
fluorine's atomic number is 9
electronic configuration: 2,7
so it needs 1 electron to stabilise
that's why 1 covalent bond
hope it helps!!
Answer:
A
Explanation:
because B is wrong as it doesn't have the same mass number. C is wrong as it has different number of neutrons. D is wrong as it has more neutrons than protons.
From the equation q=mCΔT, set the q of copper = to q of water,
So --- mCΔT(copper)=mCΔT(water).
mass (Cu - copper) = 38g
mass (H2O - water) = 15g
C (H2O) = 4.184 J/g*C
ΔΤ (H2O) = 33-22 = 11*C
ΔΤ (Cu) = 33-80 = -47*C (the final temp is the same for both materials - thermal equilibrium)
C (Cu) = ?
So --- 38(-47)C[Cu]=15(4.184)(11)
--- C[Cu]=690.36/(-1786) = 0.3865 J/g*C, or 0.39 in 2 sig figs. (The negative goes away, because specific heats are usually positive)