Answer:
+1
Explanation:
Electrochemistry. In oxidation–reduction (redox) reactions, electrons are transferred from one A redox reaction is balanced when the number of electrons lost by the reductant Hg(l)∣Hg2Cl2(s)∣Cl−(aq) ∥ Cd2+(aq)∣Cd(s).
As is evident from the Stock number, mercury has an oxidation state of +1. This makes sense, as chlorine usually has an oxidation state of -1.
Answer:
B = (2.953 × 10⁻⁹⁵) N.m⁹
Explanation:
At equilibrium, where the distance between the two ions (ro) is the sum of their ionic radii, the force between the two ions is zero.
That is,
Fa + Fr = 0
Fa = - Fr
Fa = (|q₁q₂|)/(4πε₀r²)
Fr = -B/(r^n) but n = 9
Fr = -B/r⁹
(|q₁q₂|)/(4πε₀r²) = (B/r⁹)
|q₁| = |q₂| = (1.6 × 10⁻¹⁹) C
(1/4πε₀) = k = (8.99 × 10⁹) Nm²/C²
r = 0.097 + 0.181 = 0.278 nm = (2.78 × 10⁻¹⁰) m
(k|q₁q₂|)/(r²) = (B/r⁹)
(k × |q₁q₂|) = (B/r⁷)
B = (k × |q₁q₂| × r⁷)
B = [8.99 × 10⁹ × 1.6 × 10⁻¹⁹ × 1.6 × 10⁻¹⁹ × (2.78 × 10⁻¹⁰)⁷]
B = (2.953 × 10⁻⁹⁵) N.m⁹
Answer : The correct option is A.
Explanation :
Enzyme-catalyzed reaction :
Enzyme act as a biological catalyst and the role of catalyst is to increase the rate of chemical reaction by lowering the activation energy.
Most of the chemical reactions are slow in the absence of enzyme but in the presence of enzyme, the reaction become faster. That means the Enzyme accelerate the rate of reaction.
Therefore, the correct answer is the reaction is faster than the same reaction in the absence of the enzyme.
More precisely, we need to specify its position<span> relative to a convenient reference frame. .... Also you s</span>hould know<span> that some people use the subscript "0" to refer to the ... mx, </span>start<span> subscript, 0, end subscript, equals, 1, </span>point<span>, 5, space, m and her </span>final<span> ... </span>between<span> two </span>points<span>, or we </span>can<span> talk about the distance traveled by an </span>object<span>.</span>