Answer:
Approximately 0.0898 W/m².
Explanation:
The intensity of light measures the power that the light delivers per unit area.
The source in this question delivers a constant power of
. If the source here is a point source, that
of power will be spread out evenly over a spherical surface that is centered at the point source. In this case, the radius of the surface will be 9.6 meters.
The surface area of a sphere of radius
is equal to
. For the imaginary 9.6-meter sphere here, the surface area will be:
.
That
power is spread out evenly over this 9.6-meter sphere. The power delivered per unit area will be:
.
Answer:
a) u = 30.29 m/s
b) t = 2.09 s
Explanation:
given,
velocity = 45 m/s
angle (θ) = 50°
horizontal velocity = 45 cos 50°
time taken to reach 150 m.
times = 
t = 5.19 s
a) height of arrow



s = 46.78 m
v² - u² = 2 g s
u² = 2 × 9.81 × 46.78
u = 30.29 m/s
b) time taken by the apple = 
= 3.09 s
time after which it has to be thrown = 5.19-3.09 = 2.1 s
Answer:
k1 + k2
Explanation:
Spring 1 has spring constant k1
Spring 2 has spring constant k2
After being applied by the same force, it is clearly mentioned that spring are extended by the same amount i.e. extension of spring 1 is equal to extension of spring 2.
x1 = x2
Since the force exerted to each spring might be different, let's assume F1 for spring 1 and F2 for spring 2. Hence the equations of spring constant for both springs are
k1 = F1/x -> F1 =k1*x
k2 = F2/x -> F2 =k2*x
While F = F1 + F2
Substitute equation of F1 and F2 into the equation of sum of forces
F = F1 + F2
F = k1*x + k2*x
= x(k1 + k2)
Note that this is applicable because both spring have the same extension of x (I repeat, EXTENTION, not length of the spring)
Considering the general equation of spring forces (Hooke's Law) F = kx,
The effective spring constant for the system is k1 + k2
Answer: 420
Explanation: you have to do 210x2 to get your answer!
easy peasy what's next!!