Answer:
Current: 1.0 Amperes
The minimum current is flowing through path D
Explanation:
We first find the equivalent resistance to the three resistors in parallel ( which is the total resistance of the circuit) via the equation:

with this info, we can estimate the current going through branch A using Ohm's Law, and the information that the power source is 6 V:

where the current comes in units of Amperes since all other the quantities are given in the SI system, and we can round this answer to 1.0 Amp following the request to round it to the tenth.
The current will be the lowest through the branch with the largest resistor due to the fact that less current will flow through the path of more resistance.
Than means that the lowest current will be registered through branch D where the 50
resistor is.
Answer is a) the force caused by the wend nag encountering wind and air.
Complete Question
The complete question is shown on the first uploaded image
Answer:
The <u>Fruit juice </u> should be put in the cooler, because <u>it has the greatest heat capacity</u> and will therefore, <u>absorb the most heat for each degree it increases in temperature.</u>
Explanation:
in order to understand the answer above we need to know what specific heat capacity is
Specific heat capacity can be defined as the amount of heat required to raise the temperature of a unit mass of a substance by one degree
Looking at the specific heat of each substance suggested we see that the fruit juice has a higher specific heat capacity than others this is because it contains a higher amount of water , generally liquid states of substances have a higher specific heat capacity than other states. The specific heat capacity of fruit juice being the highest among the suggested substances means that it can absorb more heat for each degree temperature of refrigerator.
Explanation:
The force of a spring is described by Hooke's law:
F = kx
where k is the spring stiffness in N/m, and x is the displacement in m.
A spring force vs displacement graph is a line passing through the origin with a slope of k.
Answer:
4.5 m/s
Explanation:
The rock must barely clear the shelf below, this means that the horizontal distance covered must be

while the vertical distance covered must be

The rock is thrown horizontally with velocity
, so we can rewrite the horizontal distance as

where t is the time of flight. Re-arranging the equation,
(1)
The vertical distance covered instead is

where we omit the term
since the initial vertical velocity is zero. From this equation,
(2)
Equating (1) and (2), we can solve the equation to find
:
