Calculate the mass of the solute <span>in the solution :
Molar mass KCl = </span><span>74.55 g/mol
m = Molarity * molar mass * volume
m = 0.9 * 74.55 * 3.5
m = 234.8325 g
</span><span>To prepare 0.9 M KCl solution, weigh 234.8325 g of salt in an analytical balance, dissolve in a beaker, shortly after transfer with the help of a funnel of transfer to a volumetric flask of 100 cm</span>³<span> and complete with water up to the mark, then cover the balloon and finally shake the solution to mix
hope this helps!</span>
Answer:
s orbital
Explanation:
it has the lowest energy because
Paulis law state that orbitals with lower energy must be fill first before that of higher energy
and the s orbital is filled first
A water molecule, because of its shape, is a polar molecule. That is, it has one side that is positively charged and one side that is negatively charged. The molecule is made up of two hydrogen atoms and one oxygen atom. The bonds between the atoms are called covalent bonds, because the atoms share electrons.
The conversion of 2 - butanol to 2 - nitrobutane involves conversion of 2 butanol to 2 - bromobutane and subsequently to 2 - nitrobutane.
In order to convert 2 - butanol to 2 - nitrobutane, an SN2 reaction is first carried out in which 2 - butanol is converted to 2 - bromobutane. This reaction proceeds with inversion of configuration at the chiral carbon as expected.
This product is subsequently reacted with silver nitrite in ethanol to yield 2 - nitrobutane along side silver bromide. Some alkyl nitrite is also produced as a by product. The components of the mixture are separated by fractional distillation. The scheme of the reaction is shown in the image attached to this answer. This reaction is only applied to primary and secondary alkyl halides.
Learn more: brainly.com/question/10079361