<h3>Answer </h3>
After another 5730 years ( three half lives or 17190 years) 17.5 /2 = 8.75mg decays and 8.75g remains left. after three half lives or 17190 years, 8.75 g of C-14 will be
Explanation:
hope this help
Answer:
The degree of dissociation of acetic acid is 0.08448.
The pH of the solution is 3.72.
Explanation:
The 
The value of the dissociation constant = 
![pK_a=-\log[K_a]](https://tex.z-dn.net/?f=pK_a%3D-%5Clog%5BK_a%5D)

Initial concentration of the acetic acid = [HAc] =c = 0.00225
Degree of dissociation = α

Initially
c
At equilibrium ;
(c-cα) cα cα
The expression of dissociation constant is given as:
![K_a=\frac{[H^+][Ac^-]}{[HAc]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BH%5E%2B%5D%5BAc%5E-%5D%7D%7B%5BHAc%5D%7D)



Solving for α:
α = 0.08448
The degree of dissociation of acetic acid is 0.08448.
![[H^+]=c\alpha = 0.00225M\times 0.08448=0.0001901 M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3Dc%5Calpha%20%3D%200.00225M%5Ctimes%200.08448%3D0.0001901%20M)
The pH of the solution ;
![pH=-\log[H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%5BH%5E%2B%5D)
![=-\log[0.0001901 M]=3.72](https://tex.z-dn.net/?f=%3D-%5Clog%5B0.0001901%20M%5D%3D3.72)
Use mv=mv, plug in the know 1x9.24=3m. Solve for m, which m is 3.08M
Answer : A and D shows PROCESS of sweating