The free-body diagram of the forces acting on the flag is in the picture in attachment.
We have: the weight, downward, with magnitude
the force of the wind F, acting horizontally, with intensity
and the tension T of the rope. To write the conditions of equilibrium, we must decompose T on both x- and y-axis (x-axis is taken horizontally whil y-axis is taken vertically):
By dividing the second equation by the first one, we get
From which we find
which is the angle of the rope with respect to the horizontal.
By replacing this value into the first equation, we can also find the tension of the rope:
To solve this problem it is necessary to apply the concepts related to the Kinetic Energy and the Energy Produced by the heat loss. In mathematical terms kinetic energy can be described as:
Where,
m = Mass
v = Velocity
Replacing we have that the Total Kinetic Energy is
On the other hand the required Energy to heat up t melting point is
Where,
m = Mass
Specific Heat
Change at temperature
Latent heat of fussion
Heat required to heat up to melting point,
The energy required to melt is larger than the kinetic energy. Therefore the heat of fusion of lead would be 327 ° C: The melting point of lead.
Answer:
Due to application of heat on a saturated solution, the interparticle space increases due to increase in the kinetic energy of the particles which allows more solutes to dissolve in the solution thereby making it unsaturated.