Answer:
1) Yes the direction of the magnetic field is found based on Fleming's Right Hand Rule
2) The pattern indicates the direction of the magnetic force field lines
Explanation:
1) The solenoid is the is the coil of electric conductor that when it carries an electric current produces a magnetic field
According to Fleming's Right Hand Rule, the direction of the magnetic field produced by a solenoid, depends on the direction of the current such that when the direction of the conventional current is in the direction of the wrapped fingers, the thumb points in the direction of the magnetic field which is North N.
2) The pattern of field lines inside the solenoid indicates the direction of the generated magnetic field moving from left to right within the solenoid as the electric current moves around in the direction shown in the diagram.
The great astronomer of ancient times who summarized and improved...in a book now called The Almagest) is Ptolemy This is further explained below.
<h3>Who is Ptolemy?</h3>
Generally, Claudius Ptolemy was a Greek mathematician, astronomer, and geographer who lived in the second century CE and is best known for proposing the geocentric model of the cosmos, which was used to explain planetary and stellar movements for the next thousand years.
In conclusion, Ptolemy, the ancient world's preeminent astronomer, compiled and refined a system of circles inside circles to describe the complexities of planetary motion, publishing his work in what is now known as The Almagest.
Read more about Ptolemy
brainly.com/question/15075606
#SPJ1
Answer:
10.028%
Explanation:
= Angle between polarizer
The polarized light after passing through first polarizer

The polarized light after passing through second polarizer

The polarized light after passing through third polarizer


The percent of the light gets through this combination of filters is 10.028%
-- Electric field lines DO never cross. <em>(A)
</em>
-- Electric field lines that are close together DO indicate a stronger electric field. <em>(B)
</em>
-- Electric field lines DO not affect the charge that created them. <em>(C)</em>
-- Electric field lines DON'T begin on north poles and end on south poles. North and South "poles" are the way we talk about magnets, not electric charges.
Double
Explanation:
Since the period T of a pendulum is given by

By increasing the length of the pendulum by 4, the period becomes

You can see that the period doubles when we increase the length by a factor of 4.