1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aleks [24]
3 years ago
9

During a shock which lasts 10ms (0.01s), the voltage difference between the electrodes (so the drop in potential across all thre

e resistors in our model) is 1750V. 200J of energy are dissipated during the shock. What is the average power delivered
Physics
1 answer:
natta225 [31]3 years ago
5 0

Answer:

20000 W

Explanation:

Power: This can be defined as the rate at which energy is dissipated or used. The S.I unit of power is Watt(W).

The expression of power is given as,

P = E/t.............................. Equation 1

Where P = power, E = Energy, t = time.

Given: E = 200 J, t = 0.01 s

Substitute into equation 1

P = 200/0.01

P = 20000 W.

Hence the average power = 20000 W

You might be interested in
The circuit you should use to find the open-circuit voltage is
fiasKO [112]

Answer:

Incomplete questions check attachment for circuit diagram.

Explanation:

We are going to use superposition

So, we will first open circuit the current source and find the voltage Voc.

So, check attachment for open circuit diagram.

From the diagram

We notice that R3 is in series with R4, so its equivalent is given below

Req(3-4) = R3 + R4

R(34) = 20+40 = 60 kΩ

Notice that R2 is parallel to the equivalent of R3 and R4, then, the equivalent of all this three resistor is

Req(2-3-4) = R2•R(34)/(R2+R(34))

R(234) = (100×60)/(100+60)

R(234) = 37.5 kΩ

We notice that R1 and R(234) are in series, then, we can apply voltage divider rule to find voltage in R(234)

Therefore

V(234) = R(234) / [R1 + R(234)] × V

V(234) = 37.5/(25+37.5) × 100

V(234) = 37.5/62.5 × 100

V(234) = 60V.

Note, this is the voltage in resistor R2, R3 and R4.

Note that, R2 is parallel to R3 and R4. Parallel resistor have the same voltage, then voltage across R2 equals voltage across R34

V(34) = 60V.

Now, we also know that R3 and R4 are in series,

So we can know the voltage across R4 which is the Voc we are looking for.

Using voltage divider

V4 = Voc = R4/(R4 + R(34)) × V(34)

Voc = 40/(40+60) × 60

Voc = 24V

This is the open circuit Voltage

Now, finding the short circuit voltage when we short circuit the voltage source

Check attachment for circuit diagram.

From the circuit we notice that R1 and R2 are in parallel, so it's equivalent becomes

Req(1-2) = R1•R2/(R1+R2)

R(12) = 25×100/(25+100)

R(12) = 20 kΩ

We also notice that the equivalent of Resistor R1 and R2 is in series to R3. Then, the equivalent resistance of the three resistor is

Req(1-2-3) = R(12) + R(3)

R(123) = 20 + 20

R(123) = 40 kΩ

We notice that, the equivalent resistance of the resistor R1, R2, and R3 is in series to resistor R4.

So using current divider rule to find the current in resistor R4.

I(4) = R(123) / [R4+R(123)] × I

I(4) = 40/(40+40) × 8

I(4) = 4mA

Then, using ohms law, we can find the voltage across the resistor 4 and the voltage is the required Voc

V = IR

V4 = Voc = I4 × R4

Voc = 4×10^-3 × 40×10^3

Voc = 160V

Then, the sum of the short circuit voltage and the open circuit voltage will give the required Voc

Voc = Voc(open circuit) + Voc(short circuit)

Voc = 24 + 160

Voc = 184V.

3 0
3 years ago
A 9.00 g bullet is fired horizontally into a 1.20 kg wooden block resting on a horizontal surface. The coefficient of kinetic fr
Zinaida [17]

Answer:

The initial speed of bullet is "164 m/s".

Explanation:

The given values are:

mass of bullet,

m'=9.00 \ g

or,

    =0.009 \ kg

mass of wooden block,

m=1.20 \ kg

speed,

s=0.390 \ m

Coefficient of kinetic friction,

\mu=0.20

As we know,

The Kinematic equation is:

⇒  v^2=u^2+2as

then,

Initial velocity will be:

⇒  u=v^2-2as

        =v^2-2 \mu gs

On substituting the given values, we get

⇒  u=\sqrt{0-2\times 0.20\times 9.8\times 0.390}

       =\sqrt{-1.5288}

       =1.23 \ m/s

As we know,

The conservation of momentum is:

⇒  mu=m'u'

or,

⇒ Initial speed, u'=\frac{mu}{m'}

On substituting the values, we get

⇒                            =\frac{1.20\times 1.23}{0.009}

⇒                            =\frac{1.476}{0.009}

⇒                            =164 \ m/s                              

3 0
2 years ago
For each of the problems below, you will need to draw a graph to find the solution.
Gelneren [198K]

Answer:

Final velocity (v) of an object equals initial velocity (u) of that object plus acceleration (a) of the object times the elapsed time (t) from u to v. Use standard gravity, a = 9.80665 m/s2, for equations involving the Earth's gravitational force as the acceleration rate of an object.

Explanation:

3 0
2 years ago
If I bought 59 kids off the black market in a secret door in the stalls and I sell 21 kids then ask for 81 more then 12 off the
larisa [96]

You will be left with 106 kids

<h3>Meaning of word problem</h3>

A word problem can be defined as a mathematical problem that is written in word or written in a sentence format.

In a word problem, the student is expected to decode the sentence into a mathematical expression before solving

In conclusion, You will be left with 106 kids

Learn more about word problems: brainly.com/question/13818690

#SPJ1

5 0
2 years ago
A 7.5-cmcm-diameter horizontal pipe gradually narrows to 4.5 cmcm . When water flows through this pipe at a certain rate, the ga
tino4ka555 [31]

Answer

given,

diameter,d₁ = 7.5 cm

               d₂ = 4.5 cm

P₁ = 32 kPa

P₂ = 25 kPa

Assuming, we have calculation of flow in the pipe

using continuity equation

 A₁ v₁ = A₂ v₂

 π r₁² v₁ = π r₂² v₂

 v_1= \dfrac{r_2^2}{r_1^2} v_2

 v_1= \dfrac{2.25^2}{3.75^2} v_2

 v_1= 0.36 v_2

Applying Bernoulli's equation

 \Delta P = \dfrac{1}{2}\rho (v_2^2-v_1^2)

 P_1-P_2 = \dfrac{1}{2}\rho (v_2^2-(0.36 v_2)^2)

 32-25 = \dfrac{1}{2}1000\times v_2^2 (1 - 0.1269)

 v_2=\sqrt{\dfrac{2\times 7\times 10^3}{1000\times (0.8704)}}

 v_2=\sqrt{16.084}

       v₂ = 4.01 m/s

fluid flow rate

Q = A₂ V₂

Q = π (0.0225)²  x 4.01

Q = 6.38 x 10⁻³ m³/s

flow in the pipe is equal to 6.38 x 10⁻³ m³/s

4 0
3 years ago
Other questions:
  • Which characteristic of the planets in our solar system increases as the distance from the sun increase?
    8·1 answer
  • What kind of relationship is it when a tree needs fungus to be present to grow normally
    7·1 answer
  • A plane flies at 200 m/s, emitting a 600 Hz roar. Assuming a 340 m/s speed of sound, what will be the frequency of sound waves h
    11·1 answer
  • Would anyone pls help me on these questions<br><br><br><br> Thanks
    7·2 answers
  • What does a electric field of two positive charges look like
    9·1 answer
  • Why us an element considered a pure substance
    11·2 answers
  • 1). An Owl and bat share the same kingdom and phylum; an owl and a cardinal share the same kingdom, phylum, and class. The owl a
    8·2 answers
  • A substance whose shape can easily change is a
    5·1 answer
  • State Newton's first law of motion .​
    15·1 answer
  • A force of 100 newtons is applied to a box at an angle of 36° with the horizontal. If the mass of the box is 25 kilograms, what
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!